Cho tam giác QRS vuông tại Q có QS =8, R = 60 độ. Giải tam giác vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sin R=\dfrac{PQ}{RQ}=\sin60^0=\dfrac{\sqrt{3}}{2}\Leftrightarrow PQ=\dfrac{\sqrt{3}}{2}\cdot6=3\sqrt{3}\)
Áp dụng PTG: \(PR=\sqrt{RQ^2-PQ^2}=\sqrt{36-27}=3\)
Ta có \(\sin\widehat{F}=\dfrac{ED}{EF}=\sin60^0=\dfrac{\sqrt{3}}{2}\Leftrightarrow EF=4\cdot\dfrac{2}{\sqrt{3}}=\dfrac{8\sqrt{3}}{3}\left(cm\right)\\ DF=\sqrt{EF^2-DE^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\left(pytago\right)\)
Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=30^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan30^0\)
\(\Leftrightarrow AB=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)
hay \(AC=\dfrac{8\sqrt{3}}{3}\left(cm\right)\)
\(\widehat{C}=90-\widehat{B}=90-38=52\)
AC=\(\sin B.BC=\sin38.8\approx4,92cm\)
AB=\(\cos B.BC=\cos38.8\approx6,3cm\)
a) \({x_M} = \frac{{{x_Q} + {x_S}}}{2} = \frac{{7 + ( - 2)}}{2} = \frac{5}{2}; \\{y_M} = \frac{{{y_Q} + {y_S}}}{2} = \frac{{( - 2) + 8}}{2} = 3\)
Vậy \(M\left( {\frac{5}{2};3} \right)\)
b)
\({x_G} = \frac{{{x_Q} + {x_S} + {x_R}}}{3} = \frac{{7 + ( - 2) + ( - 4)}}{3} = \frac{1}{3};\\{y_M} = \frac{{{y_Q} + {y_S} + {y_R}}}{3} = \frac{{( - 2) + 8 + 9}}{3} = 5\)
Vậy \(G\left( {\frac{1}{3};5} \right)\)
\(sinB=\dfrac{AC}{BC}\Rightarrow AC=sin60^0.6=3\sqrt{3}\left(cm\right)\)
\(AB=\sqrt{BC^2-AC^2}=\sqrt{6^2-\left(3\sqrt{3}\right)^2}=3\left(cm\right)\)
\(\widehat{C}=90^0-\widehat{B}=90^0-60^0=30^0\)
ΔABC vuông tại A có:
sinB=\(\dfrac{AC}{BC}=\dfrac{AC}{6}\)⇒AC=sin60.6=\(3\sqrt{3}cm\)
cosb=\(\dfrac{AB}{BC}=\dfrac{AB}{6}\)⇒AB=cos60.6=3cm
góc C = 90-góc B=90-30=60 độ
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
b: Xét ΔEBC có góc EBC=góc ECB
nên ΔEBC cân tại E
mà EH là đường cao
nên H là trung điểm của BC
=>HB=HC
d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEI=góc HEC
=>ΔEAI=ΔEHC
=>EI=EC>EH
\(\sin\widehat{R}=\dfrac{QS}{RS}=\sin60^0=\dfrac{\sqrt{3}}{2}\Leftrightarrow RS=8:\dfrac{\sqrt{3}}{2}=\dfrac{16\sqrt{3}}{3}\\ QR=\sqrt{RS^2-QS^2}=\dfrac{8\sqrt{3}}{3}\left(pytago\right)\)