Cho tam giác ABC có góc A = 90 độ ( AB < AC ), kẻ AH vuông góc với BC ( H thuộc BC ). Trên BC lấy I sao cho HI = HB. Trên tia đối của tia HA lấy K sao cho HK = HA.
a) Chứng minh: tam giác ABH = tam giác KIH.
b) Chứng minh: AB // KI.
c) Vẽ IE vuông góc với AC tại E. Chứng minh: K, I, E thẳng hàng.
d) Trên tia đối của tia IA lấy D sao cho ID = IA. CMR: KT = \(\frac{1}{2}\)AD.
\(a)\)Xét \(\Delta ABH\) và \(\Delta KIH\) có:
\(HA=HK\left(gt\right)\)
\(\widehat{BHA}=\widehat{KHI}\left(đ^2\right)\)
\(HB=HI\left(gt\right)\)
\(\Rightarrow\Delta AHB=\Delta KIH\left(c.g.c\right)\)
\(b)\widehat{BAH}=\widehat{HKI}\left(\Delta AHB=\Delta KIH\right)\)
Mà hai góc ở vị trí so le trong
\(\Rightarrow AB//KI\)
\(c)AB\perp AC\)
\(AB//KI\)
\(\Rightarrow KI\perp AC\)
\(\Rightarrow IE\perp AC\)
\(\Rightarrow IK\equiv IE\)
\(\Rightarrow K,I,E\) thẳng hàng
\(d)\)Sai đề