Cho tam giác ABC vuông tại A có đường cao AH. Lấy E, F lần lượt là trung điểm của AB, AC.
a. Chứng minh rằng: BEFC là hình thang và \(EF\perp AH\)
b. Gọi I, K lần lượt là hình chiếu của E, F trên BC. Chứng minh rằng: EFKI là hình chữ nhật
c. Chứng minh: IH=IB và KH=KC
d. Trên tia đối của AB lấy S sao cho AS=BI. Chứng minh rằng: CS=CI