HÃY SO SÁNH :
\(\sqrt{63}\)- \(\sqrt{27}\)
VÀ \(\sqrt{36}\)
HÃY GIÚP MÌNH NHÉ CÁC BẠN
cảm ơn đã giài giúp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\)
\(=\sqrt{2011}-\sqrt{2010}< \sqrt{2011}.\sqrt{2010}=B\)
Vậy A<B
Giả sử \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)\(\le\sqrt{3}\)
<=> 4 + \(\sqrt{7}\)+ 4 - \(\sqrt{7}\)- 2×\(\sqrt{16-7}\)\(\le3\)
<=> 8 - 6 \(\le3\)
<=> 2 \(\le3\)(đúng)
Vậy \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)< √3
\(\sqrt{4+7}-\sqrt{4-\sqrt{7}}=2,152902878\)
\(\sqrt{3}=1,732050808\)
Rùi so sánh đi
Áp dụng BĐT cô si cho 3 số không âm ta có:
\(\frac{4a+1+1}{2}\ge\sqrt{4a+1}\Leftrightarrow\frac{4a+2}{2}\ge\sqrt{4a+1}\Leftrightarrow2a+1\ge\sqrt{4a+1}\)
Mà a>0 nên: \(2a+1>\sqrt{4a+1}\)
Tương tự với \(\sqrt{4b+1}\) và \(\sqrt{4c+1}\) ta có:
\(2b+1>\sqrt{4b+1};2c+1>\sqrt{4c+1}\)
=>\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}
Ta thấy:
\(\sqrt{40+2}< \sqrt{49}< 7\) (1)
\(\sqrt{40}>\sqrt{36}>6\) (2)
\(\sqrt{2}>\sqrt{1}>1\) (3)
Từ (2) và (3)
\(\sqrt{40}+\sqrt{2}>6+1>7\) (4)
Từ (1) và (4)
\(\Rightarrow\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)
Vậy \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)
\(\sqrt{63}\)-\(\sqrt{27}\)<\(\sqrt{63}\)
THANH YOU VERY MUCH!