Tim GTNN cua bieu thuc
\(M=\frac{x^4+x^2+5}{x^4+2x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
2/ x+y=2 => y=2-x
\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)
\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)
=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2
1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)
Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)
Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
<=> x=1 hoặc x=1
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
\(C=5x^2-7x+4\\ =5\left(x^2-\frac{7}{5}x\right)+4\\ =5\left(x^2-2\cdot x\cdot\frac{7}{10}+\left(\frac{7}{10}\right)^2\right)+\frac{31}{20}\\ =\left(x-\frac{7}{10}\right)^2+\frac{31}{10}\ge\frac{31}{10}\forall x\)
Vậy Min C = \(\frac{31}{10}\)khi \(x=\frac{7}{10}\)
\(D=x^2+y^2-2x-4y-6\\ =\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-11\\ =\left(x-1\right)^2+\left(y-2\right)^2-11\)
Ta thấy \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow D=\left(x-1\right)^2+\left(y-2\right)^2-11\ge-11\forall x,y\)
Vậy min D = -11 khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(C=5x^2-7x+4\\ =5x^2-7x+\frac{49}{20}+\frac{31}{20}\\ =\left(x\sqrt{5}-\frac{7\sqrt{5}}{10}\right)^2+\frac{31}{20}\ge\frac{31}{20}\left(\forall x\in R\right)\)
Đẳng thức xảy ra \(\Leftrightarrow x\sqrt{5}-\frac{7\sqrt{5}}{10}=0\Leftrightarrow\sqrt{5}\left(x-\frac{7}{10}\right)=0\Leftrightarrow x=\frac{7}{10}\)
\(D=x^2+y^2-2x-4y-6=0\\ =x^2-2x+1+y^2-4y+4-11\\ =\left(x-1\right)^2+\left(y-2\right)^2-11\ge-11\left(\forall x,y\in R\right)\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(minC=\frac{31}{20}\), đạt được khi \(x=\frac{7}{10}\); và \(minD=-11\), đạt được khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Chúc bạn học tốt nha.
Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)
M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)
Đặt \(\frac{1}{x^2+1}=y\)
Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)
Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10
<=> x2 = 9 <=> \(x=\pm3\)
Vậy MinM = 19/20 khi x = 3 hoặc x = -3
Dạng này bạn chỉ cần để ý: \(x^4+2x^2+1=\left(x^2+1\right)^2\) là bình phương của một biểu thức.
Rồi đặt \(x^2+1=y\Rightarrow x^2=y-1\) rồi thay vào M là được!