K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

a, Gọi d là ƯC ( 7n + 10 ; 5n + 7 ) 

Theo bài ra ta có : 7n + 10 chia hết cho d

=> 5 ( 7n + 10 ) chia hết cho d

=> 35n + 50 chia hết cho d ( 1 )

5n + 7 chia hết cho d 

=>7 ( 5n + 7 ) chia hết cho d

=> 35n + 49 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d 

=> 1 chia hết cho d

Vậy .....

b ) 14n + 3 và 21n + 4

Gọi d là ƯC ( 14n + 3 ; 21n + 4 )

Ta có : 14n + 3 chia hết cho d

=> 3 ( 14n + 3 ) chia hết cho d

=> 42n + 9 chia hết cho d ( 1 )

21n + 4 chia hết cho d

=> 2 ( 21n + 4 ) chia hết cho d

=> 42n + 8 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 42n + 9 ) - ( 42 n + 8 ) chia hết cho d

=> 1 chia hết cho d

Vậy ........

23 tháng 11 2017

2.

a,\(50-\left[\left(50-2^3.5\right):2+3\right]\)

\(=50-\left[\left(50-40\right):2+3\right]\)

\(=50-\left(10:2+3\right)\)

\(=50-8\)

\(=42\)

b,\(8697-\left[3^7:3^5+2\left(13-3\right)\right]\)

\(=8697-\left(3^2+2.10\right)\)

\(=8697-\left(9+20\right)\)

\(=8697-29\)

\(=8668\)

c,\(205-\left[1200-\left(4^2-2.3\right)^3\right]:40\)

\(=205-200:40\)

\(=200\)

24 tháng 11 2017

2)

a) \(50-\left[\left(50-2^3.5\right):2+3\right]\)

\(=50-\left[\left(50-8.5\right):2+3\right]\)

\(=50-\left[\left(50-40\right):2+3\right]\)

\(=50-\left(10:2+3\right)\)

\(=50-\left(5+3\right)\)

\(=50-8\)

\(=42\)

b) \(8697-\left[3^7:3^5+2\left(13-3\right)\right]\)

\(=8697-\left(3^7:3^5+2.10\right)\)

\(=8697-\left(3^{7-5}+2.10\right)\)

\(=8697-\left(3^2+2.10\right)\)

\(=8697-\left(9+2.10\right)\)

\(=8697-\left(9+20\right)\)

\(=8697-29\)

\(=8668\)

c) \(205-\left[1200-\left(4^2-2.3\right)^3\right]:40\)

\(=205-\left[1200-\left(16-2.3\right)^3\right]:40\)

\(=205-\left[1200-\left(16-6\right)^3\right]:40\)

\(=205-\left(1200-10^3\right):40\)

\(=205-\left(1200-1000\right):40\)

\(=205-200:40\)

\(=205-5\)

\(=200\)

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Lời giải:
a)

Ta có:

\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)

\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)

\(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)

Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)

b)

\(2^9+2^{99}=2^9(1+2^{90})\)

Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$

$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$

Mà $2^9\vdots 4$

Do đó:

$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)