Cho tam giác ABC có A^ = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác của góc B cắt AC ở D. Kéo dài ED cắt tia BA tại K.
a) Chứng minh DA = DE
b) Chứng minh tam giác DKC là tam giác cân
c) Cho BC = 10cm, AB = 6cm. Hãy tính AC
Được nghỉ phòng dịch rồi các bạn rảnh làm nhanh giúp mình nha!!!!!!!
a, Xét tg ABD và tg EBD có : AB = EB (gt)
gABD = gEBD (BD là tia phân giác của gABE)
BD chung
=> tgABD = tgEBD (c.g.c)
=> DA = DE ( hai cạnh tương ứng )
b,vì tgABD = tgEBD (cmt)
=>gABD = gAEB=90 độ (hai góc tương ứng)
=>gDAK = gDEC = 90 độ
xét tgAKD và tgEDC có: gDAK = gDEC (cmt)
AD = DE ( cmt)
gADK = gEDC ( hai góc đối đỉnh)
=> tgAKD = tgEDC (g.c.g)
=> DK = DC (hai cạnh tương ứng)
=> tg DKC cân tại D
c,xét tgABC vuông tại A ( góc A = 90độ , theo định lí Pytago ta có
BC^2=AB^2 + AC^2
=>AC^2 = 100- 36=64
=> AC = 8 (cm)
a, xét tam giác ABD và tam giác EBD có : BD chung
BA = BE (Gt)
góc ABD = góc EBD do BD là phân giác của góc ABC (gt)
=> tam giác ABD = tam giác EBD (c-g-c)
=> AD = DE (đn)
b, Xét tam giác DCE và tam giác KDA có : AD = DE (Câu a)
góc KDA = góc CDE (đối đỉnh)
góc CED = góc DAK = 90
=> tam giác CE = KA (đn)
có AB = BE (gt)
AB + KA = BK
BE + EC = BC
=> BC = BK
=> BCK cân tại B (đn)
c, dùng ty ta go thôi