cho 19 điểm phân biệt nằm trong một tam giác đều có cạnh bằng 3 trong đó không có 3 điểm nào thẳng hàng.cmr luôn tìm đc 1 tam giác có 3 đỉnh là 3 trong số 19 điểm đã cho và có S=\(\frac{\sqrt{3}}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Lấy 1 điểm nối tới 5 điểm còn lại được 5 đoạn thẳng
Mà có 6 điểm nên có : 6.5=30 đoạn thẳng
Như thế mỗi đoạn thẳng sẽ được tính 2 lần nên có số đoạn thẳng thực sự là : 30:2=15 đoạn thẳng
- Lấy 1 đoạn thẳng(1 đoạn thẳng là 2 điểm nên còn 6-2=4 điểm). Nối 2 đầu của đoạn thẳng tới 4 điểm ta được 4 tam giác
Mà có 15 đoạn thẳng nên có : 15.4= 60(tam giác)
Như thế mỗi tam giác sẽ được tính 3 lần nên có số tam giác thực sự là : 60:3 = 20 tam giác
Vậy có 20 tam giác
Chúc bạn học tốt nhé !!!
Gọi d là khoảng cách Ai AJ là 2 điểm xa nhau nhất trong các điểm thuộc tập S
Giả sử Ak là điểm xa đường Ai AJ nhất. Ta có tam giác Ai AJAk có diện tích không lớn hơn 1(theo giả thiết). và là tam giác có Smax
Từ các đỉnh Ai, AJ,Ak ta kẻ các đường thẳng song song với các cạnh của tam giác.
Ta sẽ thu được 4 tam giác con bằng nhau và tam giac lớn nhất
Diện tích tam giác lớn nhất này không quá 4 đơn vị
Tam giác lớn nhất này chứa cả 8065 điểm đã cho
(dễ chứng minh bằng phản chứng vì S của tam giác Ai AJAmax)
Vì
8065:4=2016 dư 1
Suy ra tồn tại 1 trong 4 tam giác con chứa không dưới 2017 điểm thuộc tập S thỏa mãn đề bài.
chia hình vuông thành 25 hình vuông nhỏ có cạnh bằng 1cm ( nghĩa là diện tích bằng 1cm^2)
Theo nguyên lí dirichlet do có 51 điểm và 25 hình vuông
nên tồn tại một hình vuông con chứa ít nhất 3 điểm
Nên 3 điểm đỏ taoh thành 1 tma giác có diện tích nhỏ hơn 1/2 diện tích hình vuông nhỏ là 0,5 cm^2
Vậy ta có điều phải chứng minh
Chia tam giác đều cạnh 3 ra thành 9 tam giác đều cạnh 1
\(S_{ABC}=\frac{a^2\sqrt{3}}{4}=\frac{9\sqrt{3}}{4}\Rightarrow S_{nho}=\frac{\sqrt{3}}{4}\)
Có 19 điểm nằm trong 9 đa giác nhỏ nên theo nguyên lý đirichlet có ít nhất 3 điểm thuộc tam giác nhỏ.Giả sử đó là \(A,A_1,A_2\)
\(\Rightarrow S_{AA_1A_2}\le\frac{\sqrt{3}}{4}\) ( đpcm )
Mọi người đừng hiểu nhầm là copy này nọ nhé!Bài này tui nghĩ 1 tiếng trước rồi ( cùng đội tuyển toán làm đề mà ) tin nhắn không làm nổi nên lên đây làm cho tiện mà !