Cmr: Nếu a,b,c và a',b',c' là độ dài các cạnh của hai tam giác đồng dạng( các cạnh có độ dài a,b,c lần lượt tương ứng với các cạnh dộ dài a',b',c' ) thì \(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(a>b\) nên \(a-b>0\)
\(c>d\) nên \(c-d>0\)
Do đó : \(a-b+c-d>0\)
\(\Leftrightarrow a+c-\left(b+d\right)>0\)
\(\Leftrightarrow a+c>b+d\)
b, \(a>b>0\)nên \(\frac{a}{b}>1\)
\(c>d>0\)nên \(\frac{c}{d}>1\)
\(\Rightarrow\frac{a}{b}.\frac{c}{d}>1\)
\(\Leftrightarrow\frac{ac}{bd}>1\)
\(\Leftrightarrow ac>bd\)
Ta có: 2bd=c.(b+d)
Mà a+c=2b
=>d.(a+c)=c.(b+d)
=>cd =a+cb+d
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
cd =a+cb+d =a+c−cb+d−d =ab
chưa chắc mik làm đúng
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\left(a+b+c\right)\left(a^2-ab+b^2-bc+c^2-ca\right)=0\)\(Màa,b,c\ne0\Rightarrow a^2-ab+b^2-bc+c^2-ca=0\Rightarrow a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)
\(a,b,c\ne0\Rightarrow a-b=0;b-c=0;c-a=0\Rightarrow a=b=c\)
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
Ta có: \(a^2=bc\)
=> \(bc-a^2=a^2-bc\)
<=> \(bc-a^2+ac-ab=a^2-bc+ac-ab\)
<=> \(\left(ac-a^2\right)+\left(bc-ab\right)=\left(a^2-ab\right)+\left(ac-bc\right)\)
<=> \(a\left(c-a\right)+b\left(c-a\right)=a\left(a-b\right)+c\left(a-b\right)\)
<=> \(\left(a+b\right)\left(c-a\right)=\left(a+c\right)\left(a-b\right)\)
<=> \(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)(đpcm)
Ta có:2bd=c(b+d)
=>2bd=bc+cd
Mà a+c=2b (theo đề)
=>(a+c).d=bc+cd
=>ad+cd=bc+cd
=>ad=bc (cùng bớt đi cd)
=>a/b=c/d (đpcm)
Ta có:
\(2bd=c\left(b+d\right)\)
\(\Rightarrow\left(a+c\right).d=bc+cd\)
\(\Rightarrow ad+cd=bc+cd\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
a chia hết cho b=>a là ội của b=>bchia hết cho c b là bội của c=>a chia hết cho c
gt \(\Rightarrow\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=ka'\\b=kb'\\c=kc'\\a+b+c=k\left(a'+b'+c'\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}aa'=ka'^2\\bb'=kb'^2\\cc'=kc'^2\\\left(a+b+c\right)\left(a'+b'+c'\right)=k\left(a'+b'+c'\right)^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{k}\left(a'+b'+c'\right)\\\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k}\left(a'+b'+c'\right)\end{matrix}\right.\) => đpcm