K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

gt \(\Rightarrow\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=ka'\\b=kb'\\c=kc'\\a+b+c=k\left(a'+b'+c'\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}aa'=ka'^2\\bb'=kb'^2\\cc'=kc'^2\\\left(a+b+c\right)\left(a'+b'+c'\right)=k\left(a'+b'+c'\right)^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{k}\left(a'+b'+c'\right)\\\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k}\left(a'+b'+c'\right)\end{matrix}\right.\) => đpcm

a, \(a>b\) nên \(a-b>0\)

\(c>d\) nên \(c-d>0\)

Do đó : \(a-b+c-d>0\)

\(\Leftrightarrow a+c-\left(b+d\right)>0\)

\(\Leftrightarrow a+c>b+d\)

b, \(a>b>0\)nên \(\frac{a}{b}>1\)

\(c>d>0\)nên \(\frac{c}{d}>1\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}>1\)

\(\Leftrightarrow\frac{ac}{bd}>1\)

\(\Leftrightarrow ac>bd\)

 

Ta có: 2bd=c.(b+d)

Mà a+c=2b

=>d.(a+c)=c.(b+d)

=>cd =a+cb+d 

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
cd =a+cb+d =a+ccb+dd =ab 


chưa chắc mik làm đúng

14 tháng 4 2019

sai rồi nhìn kĩ đề bài đi

25 tháng 10 2015

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\left(a+b+c\right)\left(a^2-ab+b^2-bc+c^2-ca\right)=0\)\(Màa,b,c\ne0\Rightarrow a^2-ab+b^2-bc+c^2-ca=0\Rightarrow a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)

\(a,b,c\ne0\Rightarrow a-b=0;b-c=0;c-a=0\Rightarrow a=b=c\)

bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ

12 tháng 7 2016

Ta có: \(a^2=bc\)

=> \(bc-a^2=a^2-bc\)

<=> \(bc-a^2+ac-ab=a^2-bc+ac-ab\)

<=> \(\left(ac-a^2\right)+\left(bc-ab\right)=\left(a^2-ab\right)+\left(ac-bc\right)\)

<=> \(a\left(c-a\right)+b\left(c-a\right)=a\left(a-b\right)+c\left(a-b\right)\)

<=> \(\left(a+b\right)\left(c-a\right)=\left(a+c\right)\left(a-b\right)\)

<=> \(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)(đpcm)

28 tháng 3 2016

Ta có:2bd=c(b+d)

=>2bd=bc+cd

Mà a+c=2b (theo đề)

=>(a+c).d=bc+cd

=>ad+cd=bc+cd

=>ad=bc (cùng bớt đi cd)

=>a/b=c/d (đpcm)

31 tháng 10 2018

Ta có:

\(2bd=c\left(b+d\right)\)

\(\Rightarrow\left(a+c\right).d=bc+cd\)

\(\Rightarrow ad+cd=bc+cd\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

30 tháng 10 2018

Giúp mik nha

😁😁😁😁😁

a chia hết cho b=>a là ội của b=>bchia hết cho c b là bội của c=>a chia hết cho c

6 tháng 2 2018

ta có : a=b.q 

          b=c.k

=> a= c.k.q => a= c(k.q)=> a chia hết choc (đpcm)