cho x và y là các số nguyên dương thõa mãn \({x+2y \ \over x+y}\) = \( {2016 \ \over 2015}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{2x+y}{x+y}=\frac{2016}{2015}\)
\(\Rightarrow\frac{x+y+x}{x+y}=\frac{2015+1}{2015}\)
\(\Rightarrow1+\frac{x}{x+y}=1+\frac{1}{2015}\)
\(\Rightarrow\frac{x}{x+y}=\frac{1}{2015}\)
\(\Rightarrow2015x=x+y\)
\(\Rightarrow y=2014x\)
Vậy \(y=2014x\)
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
2x2 + 2y2 -2xy+2x+2y+2=0
<=>x2-2xy+y2+x2+2x+1+y2+2y+1=0
<=>(x-y)2+(x+1)2+(y+1)2=0
<=>x=-1;y=-1
\(\text{1 . 2016}^z\text{ + 2017}^y\text{ = 2018}^x\)
\(\text{TH1 : z = 0}\)
\(\Rightarrow2016^0+2017^y=2018^x\)
\(\Rightarrow1+2017^y=2018^x\)
\(\Rightarrow y=1;x=1\)
\(\text{TH2 : y = 0 }\)
\(\Rightarrow2016^z+2017^0=2018^x\)
\(\Rightarrow2016^z+1=2018^x\)
\(\text{Vế trái là số lẻ khi x }\ge1\)
\(\text{Vế phải là số chẵn khi x }\ge1\)
\(\Rightarrow\text{TH2 bị loại}\)
\(\text{TH3 : }x,y,z\ne0\)
\(\Rightarrow2016^z+2017^y\text{ là số lẻ}\)
\(\Rightarrow2018^x\text{ là số chẵn}\)
\(\Rightarrow\text{TH3 bị loại}\)
\(\text{Vậy z = 0 ; y = 1 ; x = 1}\)