K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

\(993 \sqrt{3}+2 \sqrt{2} x+99\sqrt{3} x^2\)

\(=\frac{294919}{99 \sqrt{3}}+\frac{(2\sqrt{2}+198 \sqrt{3} x)^2}{(396 \sqrt{3})}>0\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2021

Lời giải:
Xét số hạng tổng quát: 

\(\frac{\sqrt{n+1}-\sqrt{n}}{n+(n+1)}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n(n+1)}}=\frac{1}{2}(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}})\) theo BĐT Cô-si.

Do đó:
\(x< \frac{1}{2}\left[\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\right]=\frac{1}{2}(1-\frac{1}{\sqrt{100}})< \frac{1}{2}\)

Ta có đpcm.

17 tháng 10 2019

không biết bài này giải thế nào 

16 tháng 5 2017

Ta có:

\(x_0^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\)

\(\Leftrightarrow\left(\dfrac{8-x_0^2}{2}\right)^2=\left(\sqrt{2+\sqrt{3}}+\sqrt{3\left(2-\sqrt{3}\right)}\right)^2\)

\(=8-2\sqrt{3}+2\sqrt{3}=8\)

\(\Rightarrow x_0^4-16x_0^2+64=32\)

\(\Rightarrow x_0^4-16x_0^2+32=0\)

Vậy ......

8 tháng 7 2019

làm tắt quá mình ko hiểu

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0
NV
17 tháng 4 2022

\(B=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\dfrac{\sqrt{2}-1}{1}+\dfrac{\sqrt{3}-\sqrt{2}}{1}+...+\dfrac{\sqrt{100}-\sqrt{99}}{1}\)

\(=\sqrt{100}-1=9\)

\(x^3+3.9x^2+3.9^2x+9^3=0\)

\(\Leftrightarrow\left(x+9\right)^3=0\)

\(\Leftrightarrow x=-9\)