K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

\(F=x_1^2-3x_2-2013\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-7\end{matrix}\right.\)

Vì \(x_1\) là nghiệm của PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)

\(\Leftrightarrow F=7-3x_1-3x_2-2013\\ F=-2006-3\left(x_1+x_2\right)=-2006-3\left(-3\right)=-1997\)

13 tháng 1 2023

`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`

Có: `A=(3x_1+2x_2)(3x_2+x_1)`

     `A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`

    `A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`

Vậy `A=-13/25`

____________________________________________________

`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`

Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`

     `M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`

    `M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`

   `M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`

   `M=6/[x_2(7x_2-2)]`   `(1)`

Có: `x_1+x_2=2/7=>x_1=2/7-x_2`

 Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`

      `<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`

`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`

`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`

Vậy `M=2`

1:

\(\left\{{}\begin{matrix}\dfrac{2x+1}{x+1}+\dfrac{3y}{y-1}=1\\\dfrac{3x}{x+1}-\dfrac{4y}{y-1}=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2-\dfrac{1}{x+1}+3+\dfrac{3}{y-1}=1\\3-\dfrac{3}{x+1}-\dfrac{4y-4+4}{y-1}=10\end{matrix}\right.\)

=>-1/(x+1)+3/(y-1)=1-2-3=-5 và -3/(x+1)-4/(y-1)=10-3-4=3

=>x+1=13/11 và y-1=-13/18

=>x=2/11 và y=5/18

2 tháng 1 2022

Vì \(x_1\) là nghiệm PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)

\(F=x_1^2-3x_2-2013=7-3x_1-3x_2-2013\\ F=-3\left(x_1+x_2\right)-2006\)

Mà theo Viét ta có \(x_1+x_2=-3\)

\(\Rightarrow F=\left(-3\right)\left(-3\right)-2006=-1997\)

8 tháng 7 2023

a) Phương trình có hai nghiệm phân biệt khi: 

\(\Delta=9-4\left(m+1\right)>0\)  \(\Leftrightarrow m< \dfrac{5}{4}\)

Vậy \(\ m< \dfrac{5}{4}\) thì pt có hai nghiệm phân biệt.

b) Áp dụng hệ thức viet có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m+1\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-4x_1.x_2+7m+5.x_1x_2\)

\(=9-4\left(m+1\right)+7m+5\left(m+1\right)\)

\(=8m+10\)

Không tồn tại giá trị lớn nhất. Em xem lại đề

12 tháng 7 2023

Trên đó em ko hề có ghi là tìm m để pt có 2 nghiệm phân biệt. Vậy nên phải là m \(\le\dfrac{5}{4}\). KQ: Giá trị lớn nhất của P = 20 khi m = \(\dfrac{5}{4}\)

27 tháng 4 2020

Câu a ) 

\(2x^4+3x^2-2=0\left(1\right)\)

Đặt \(t=x^2\left(t\ge0\right)\) phương trình (1) trở thành:

\(2t^2+3t-2=0\)

\(\Leftrightarrow t\left(2t-1\right)+4t-2=0\)

\(\Leftrightarrow t\left(2t-1\right)+2\left(2t-1\right)=0\)

\(\Leftrightarrow\left(2t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2t-1=0\\t+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\1=-2\left(loại\right)\end{cases}}\)

Với \(t=\frac{1}{2}\Leftrightarrow x^2=\frac{1}{2}\Rightarrow x=\pm\frac{\sqrt{2}}{2}\)

Vậy tập nghiệm của phương trình là  \(S=\left\{\pm\frac{\sqrt{2}}{2}\right\}\)

 
27 tháng 4 2020

Câu b ) 

\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2\)

\(\Delta>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)

\(\hept{\begin{cases}x_1+x_2=m+1\\x_1x_2=m\end{cases}}\)

\(x_1=3x_2\Rightarrow3x_2+x_2=m+1\Leftrightarrow4x_2=m+1\)

\(\Leftrightarrow x_2=\frac{m+1}{4}\Rightarrow x_1=\frac{3\left(m+1\right)}{4}\)

\(x_1x_2=m\Leftrightarrow\frac{3\left(m+1\right)^2}{16}=m\)

\(\Leftrightarrow3m^2+6m+3=16m\)

\(\Leftrightarrow3m^2-10m+3=0\)

\(\Leftrightarrow\left(3m-1\right)\left(m-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{3}\\m=3\end{cases}\left(tm\right)}\)

a: Khi m=1 thì (1) sẽ là:

x^2-x-8=0

=>\(x=\dfrac{1\pm\sqrt{33}}{2}\)

b: 3x1^2+3x2^2+2x1x2=5

=>3[(x1+x2)^2-2x1x2]+2x1x2=5

=>3[(2m-1)^2-2(-8m)]+2(-8m)=5

=>3(4m^2-4m+1+16m)-16m=5

=>12m^2+36m+3-16m-5=0

=>12m^2+20m-2=0

=>\(m=\dfrac{-5\pm\sqrt{31}}{6}\)