5x + 25 = -3xy + 8y2
Giải phương trình nghiệm nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình \(5x+25=-3xy+8y^2\Leftrightarrow x=\frac{8y^2-25}{3y+5}\)
Bời vì x,y là số nguyên \(\Rightarrow8y^2-25⋮3y+5\)
\(\Rightarrow3\left(8y^2-25\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2-75\right)⋮\left(3y+5\right)\left(1\right)\)
Mặt khác ta có \(8y\left(3y+5\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2+40y\right)⋮\left(3y+5\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left[\left(24y^2+40y\right)-\left(24y^2-75\right)\right]⋮\left(3y+5\right)\)
Do đó \(\left(40y+75\right)⋮\left(3y+5\right)\Rightarrow3\left(40y+75\right)⋮\left(3y+5\right)\)
\(\Rightarrow\left(120y+225\right)⋮\left(3y+5\right)\)mà \(40\left(3y+5\right)⋮\left(3y+5\right)\)
\(\Rightarrow\left(120y+200\right)⋮\left(3y+5\right)\Rightarrow\left(120y+225\right)-\left(120y+200\right)=25⋮\left(3y+5\right)\)
\(\Rightarrow3y+5\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
\(\Rightarrow y\in\left\{-2;0;-10\right\}\)
Với y=-2 => x=-7 ta có cặp (-7;-2) thỏa mãn
Với y=0 => x=-5 ta có cặp (-5;0) thỏa mãn
Với y=-10 => x=-3 ta có cặp (-3;-10) thỏa mãn
Phương trình có các cặp nghiệm nguyên \(\left(x;y\right)=\left\{\left(-7;-2\right);\left(-5;0\right);\left(-3;-10\right)\right\}\)
\(8x^2-3xy-5y=25\)
\(\Leftrightarrow8x^2-25=3xy+5y\Leftrightarrow8x^2-25=y\left(3x+5\right)\)
\(\Leftrightarrow y=\frac{8x^2-25}{3x+5}\)\(\Rightarrow9y=\frac{72x^2-225}{3x+5}=24x-40-\frac{25}{3x+5}\)
\(\Rightarrow3x+5\inƯ\left(25\right)=\pm1;\pm5;\pm25\)
Đến đây bạn tự suy ra x rồi thay vào biểu thức trên để suy ra y là ok.
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Lời giải:
PT $\Leftrightarrow x^2+x(3y-1)+(2y^2-2)=0$
Coi đây là pt bậc 2 ẩn $x$ thì:
$\Delta=(3y-1)^2-4(2y^2-2)=y^2-6y+9=(y-3)^2$. Do đó pt có 2 nghiệm:
$x_1=\frac{1-3y+y-3}{2}=-y-1$
$x_2=\frac{1-3y+3-y}{2}=2-2y$
Đến đây bạn thay vô pt ban đầu để giải pt bậc 2 một ẩn thui.
6x2-3xy+17x-4y+5=0
⇔ -3xy-4y=-6x2-17x-5
⇔ 3xy+4y=6x2+17x+5
⇔ y(3x+4)=6x2+17x+5
6x2+17x+5 ⋮ 3x-4 vì x, y ∈ Z
⇔ 6x2+17x+12-7 ⋮ 3x+4
⇔ 6x2+8x+9x+12-7 ⋮ 3x+4
⇔ 2x(3x+4)+3(3x+4)-7 ⋮ 3x+4
=> 7 ⋮ 3x+4
=> 3x+4 ∈ Ư(7)={-1,1,-7,7}
3x+4=1 ⇔ x=-1 (lấy)
3x+4=-1 ⇔ x=\(\dfrac{-5}{3}\) (loại)
3x+4=-7 ⇔ x=\(\dfrac{-11}{3}\)(loại)
3x+4=7 ⇔ x=1 (lấy)
thay vào tính thì y={-6,4} (bạn tự làm nhá)
vậy (x,y)={(-1,1),(-6,4)}
\(\Leftrightarrow\left(x+y\right)\left(x+2y\right)+3\left(x+y\right)=15\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y+3\right)=15\)
15 có hơi nhiều cặp ước nên bạn tự lập bảng và giải nốt nhé :)