Tinh nhanh
\(164:\left\{192-\left[2^3\cdot15-\left(40-37\right)^2\right]+2021^0\right\}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
a) \(A=3\left|2x-\dfrac{3}{2}\right|+2021^0=3\left|2x-\dfrac{3}{2}\right|+1\ge1\)
\(minA=1\Leftrightarrow2x=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{4}\)
b) \(B=2\left|x-6\right|+3\left(2y-1\right)^2+2021^0=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\)
\(minB=1\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(A=3\left|2x-\dfrac{3}{2}\right|+1\ge1\\ A_{min}=1\Leftrightarrow2x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{4}\\ B=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)
a) 2021 - (1/3)² . 3²
= 2021 - 1/9 . 9
= 2021 - 1
= 2020
b) 5/10 + 9 . (-3/2)
= 1/2 - 27/2
= -26/2
= -13
c) -10 . (-2021/2022)⁰ + (2/5)² : 2
= -10 . 1 + 4/25 . 2
= -10 + 8/25
= -68/7
\(a,2021-\left(\dfrac{1}{3}\right)^2\cdot3^2\\ =2021-\dfrac{1}{9}\cdot9\\ =2021-\dfrac{9}{9}\\ =2021-1=2020\\ b,\dfrac{5}{10}+9\cdot\dfrac{-3}{2}\\ =\dfrac{5}{10}+\dfrac{-27}{2}\\ =\dfrac{5}{10}+\dfrac{-135}{10}\\ =-\dfrac{130}{10}\\ =-13\\ c,-10\cdot\left(-\dfrac{2021}{2022}\right)^0+\left(\dfrac{2}{5}\right)^2:2\\ =-10\cdot1+\dfrac{4}{25}\cdot\dfrac{1}{2}\\ =-10+\dfrac{4}{50}\\ =-10+\dfrac{2}{25}\\ =-\dfrac{248}{25}\)
1
e) E >= 2021
dấu = xảy ra khi x=1/2
g) G = |x-1|+ |2-x| >= |x-1+2-x|=1
Dấu = xảy ra khi (x-1)(2-x)>=0 <=> 1<=x<=2
h) H = |x-1|+|x-2| + |x-3|
Ta có : |x-1| + |x-3| = |x-1| + |3-x| >= |x-1+3-x| = 2
|x-2| >=0
=> H>=2
Dấu = xảy ra khi (x-1)(3-x) >=0 ; x-2=0
<=> x=2
k) K = |x-1| + |2x-1|
2K = |2x-2| + |2x-1| + |2x-1|
Ta có : |2x-2| + |2x-1| = |2x-2| + |1-2x| >= |2x-2+1-2x|=1
|2x-1| >=0
Dấu = xảy ra (2x-2)(1-2x) >=0; 2x-1=0
<=> x=1/2
e)Vì \(\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ \Rightarrow2\left|x-\dfrac{1}{2}\right|+2012\ge2012\forall x\)
Dấu "=" xảy ra khi x=\(\dfrac{1}{2}\)
Vậy...
b)G=|x-1|+ |2-x|\(\)
áp dụng bđt |a+b|+ |c+d|\(\ge\left|a+b+c+d\right|\forall x\)
\(\Rightarrow\)ta có |x-1|+ |2-x|\(\ge\) \(\left|x-1+2-x\right|\forall x\)
\(\Leftrightarrow\text{|x-1|+ |2-x| }\ge1\forall x\)
Dấu "=" xảy ra khi 1\(\le x\le2\) \(\forall x\)
Vậy...
h)H= |x-1|+|x-2| + |x-3|
Ta có |x-1| + |x-3|
=|x-1| + |3-x| ( trong giá trị tuyệt đối đổi dấu không cần đặt dấu trừ ở ngoài)
=>|x-1| + |3-x|\(\ge\left|x-1+3-x\right|\forall x\)
<=>|x-1| + |3-x|\(\ge2\forall x\) (1)
Mà |x-2|\(\ge0\forall x\) (2)
Từ (1) và (2)=> ta có |x-1|+|x-2| + |x-3| \(\ge2\forall x\)
Dấu "=" xảy ra khi x-2=0
<=>x=2
Vậy...
k) K = |x-1| + |2x-1|
2K = |2x-2| + |2x-1| + |2x-1|
Mà : |2x-2| + |2x-1|
=|2x-2| + |1-2x|\(\ge\text{|2x-2+1-2x|}\) \(\forall x\)
Lại có |2x-1| \(\ge\)0 \(\forall x\)
Dấu "=" xảy ra 2x-1=0
<=>x=\(\dfrac{1}{2}\)
Vậy....
e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25
\(164:\left\{192-\left[2^3\cdot15-\left(40-37\right)^2\right]+2021^0\right\}\)
\(=164:\left\{192-120+9+1\right\}\)
\(=164:82=2\)