Bài 8: Tìm giá trị nhỏ nhất của A(x)=(x-1)(x-3)(x-4)(x-6)+10.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\left(x\right)=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
\(=\left[\left(x-1\right)\left(x-6\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+10\)
\(=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+10\)
Đặt \(x^2-7x+9=t\)
Khi đó: \(A=\left(t-3\right)\left(t+3\right)+10=t^2+1\ge1\forall t\)
Dấu "=" xảy ra khi: \(x^2-7x+9=0\)
Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời
Bài 5:
a/A = x2 - 6x + 10 = x2 - 6x + 9 + 1 = ( x - 3 )2 +1
Vì ( x - 3 )2 \(\ge\)0 nên ( x - 3 )2 + 1 \(\ge\)1
Giá trị nhỏ nhất của A là 1
b/ B = x ( x + 6 ) = x2 + 6x + 9 - 9 = ( x + 3 )2 - 9
Vì ( x + 3 )\(\ge\)0 nên ( x + 3 ) - 9\(\ge\)- 9
Giá trị nhỏ nhất của B là - 9
5 - A\(=x^2-6x+10\)
A\(=x^2-3x-3x+9+1\)
A\(=x\left(x-3\right)-3\left(x-3\right)+1\)
A\(=\left(x-3\right)\left(x-3\right)+1\)
A\(=\left(x-3\right)^2+1\)
Vì \(^{\left(x-3\right)^2\ge0\forall x}\)
\(\rightarrow\left(x-3\right)^2+1\ge1\forall x\)
Hay A\(\ge1\forall x\)
Dấu '' = '' xảy ra\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
B\(=x\left(x+6\right)\)
B\(=x^2+6x\)
B\(=x\left(x+3\right)+3\left(x+3\right)-9\)
B\(=\left(x+3\right)\left(x+3\right)-9\)
B\(=\left(x+3\right)^2-9\)
Vì\(\left(x+3\right)^2\ge0\forall x\)
\(\rightarrow\left(x+3\right)^2-9\ge-9\forall x\)
Hay B\(\ge-9\forall x\)
Dấu ''='' xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
Bài giải
\(A\left(x\right)=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
\(=\left[\left(x-1\right)\left(x-6\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+10\)
\(=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+10\)
Đặt \(x^2-7x+9=t\)
Khi đó \(A=\left(t-3\right)\left(t+3\right)+10=t^2+1\ge1\forall t\)
Dấu " = " xảy ra khi : \(x^2-7x+9=0\)