cho tam giác ABC vuông cân tại đỉnh A. Qua A kẻ đường thẳng xy bất kỳ không cắt đoạn thẳng BC. kẻ BM và CN vuông góc với xy
a, CM tam giác ACN = tam giác BAN
b, CM CN + BM = MN
c, CM BM2 + CN2 không phụ thuộc vào vị trí của xy.
giúp mình giải bài này với!
a, ^NAC + ^BAC + ^MAB = 180 (kb)
^BAC = 90
=> ^NAC + ^MAB = 90
^NAC + ^NCA = 90
=> ^NCA = ^MAB
xét tam giác CNA và tam giác AMB có : AB = AC do tam giác ABC vc (gt)
^CNA = ^AMB = 90
=> tam giác CNA = tam giác AMB (ch-gn)
b, tam giác CNA = tam giác AMB (câu a)
=> NA = BM (đn) và CN = AM (đn)
có : NA + MA = MN
=> BM + CN = MN
c, NC = AM (câu b) => NC^2 = AM^2
xét tam giác MB vuông tại M => BM^2 + AM^2 = AB^2 (pytago)
=> BM^2 + NC^2 = AB^2
mà AB không phụ thuộc vào xy
=> BM^2 + CN^2 không phụ thuộc vào xy