K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

Giúp mình với 

 

22 tháng 10 2021

Áp dụng BĐT cosi:

\(A=\left(3x+\dfrac{3}{x}\right)+\left(\dfrac{4}{9}y+\dfrac{4}{y}\right)+\left(2x+y\right)\\ A\ge2\sqrt{\dfrac{9x}{x}}+2\sqrt{\dfrac{16y}{9y}}+5\\ A\ge2\cdot3+2\cdot\dfrac{4}{3}+5=\dfrac{41}{3}\)

Vậy \(A_{min}=\dfrac{41}{3}\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{3}{x}\\\dfrac{4y}{9}=\dfrac{4}{y}\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

1 tháng 1 2021

Ta có: \(\left(x-1\right)^2+\left(x+y\right)^2\le9\Rightarrow x+y\le3\).

Áp dụng bất đẳng thức AM - GM ta có:

\(\dfrac{2}{x}+2x\ge2\sqrt{\dfrac{2}{x}.2x}=4;\dfrac{4}{y}+y\ge2\sqrt{\dfrac{4}{y}.y}=4\).

Do đó \(\dfrac{2}{x}\ge4-2x;\dfrac{4}{y}\ge4-y\)

\(\Rightarrow P\ge8-4\left(x+y\right)\ge-4\). (do \(x+y\le3\)).

Vậy...

Đẳng thức xảy ra khi và chỉ khi x = 1; y = 2.

13 tháng 2 2023

Đỉnh cao pạn ưi

25 tháng 7 2023

Bài 3 :

\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)

\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)

\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)

\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)

.....

\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)

\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)

25 tháng 7 2023

Bạn xem lại đề 2, phần mẫu của N

4 tháng 8 2021

còn cách làm khác không ạ?

 

3 tháng 2 2023

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

3 tháng 2 2023

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

NV
27 tháng 7 2021

Đặt \(\dfrac{x}{y}+\dfrac{y}{x}=t\Rightarrow\left|t\right|\ge2\)

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}=t^2-2\)

\(\dfrac{x^4}{y^4}+\dfrac{y^4}{x^4}=\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)^2-2=\left(t^2-2\right)^2-2=t^4-4t^2+2\)

\(\Rightarrow P=f\left(t\right)=t^4-4t^2+2-\left(t^2-2\right)+t\)

\(f\left(t\right)=t^4-5t^2+t+4\)

Xét hàm \(f\left(t\right)=t^4-5t^2+t+4\) trên \((-\infty;-2]\cup[2;+\infty)\)

\(f'\left(t\right)=g\left(t\right)=4t^3-10t+1\)

\(g\left(t\right)\) bậc 3 nên có tối đa 3 nghiệm

\(g\left(-2\right)=-11\) ; \(g\left(0\right)=1\)

\(\Rightarrow g\left(-2\right).g\left(0\right)< 0\Rightarrow g\left(t\right)=0\) có nghiệm \(t_1\in\left(-2;0\right)\)

\(g\left(1\right)=-5< 0\Rightarrow g\left(0\right).g\left(1\right)< 0\Rightarrow g\left(t\right)\) có nghiệm \(t_2\in\left(0;1\right)\)

\(g\left(2\right)=13\Rightarrow g\left(1\right).g\left(2\right)< 0\Rightarrow g\left(t\right)\) có nghiệm \(t_3\in\left(1;2\right)\)

Dấu \(f'\left(t\right)\):

undefined

Từ đây ta thấy \(f\left(t\right)\) nghịch biến trên \((-\infty;-2]\) và đồng biến trên \([2;+\infty)\)

Hay GTNN của \(f\left(t\right)\) sẽ rơi vào \(t=-2\) hoặc \(t=2\)

\(f\left(-2\right)=-2\) ; \(f\left(2\right)=2\)

\(\Rightarrow f\left(t\right)_{min}=-2\) khi \(t=-2\) hay \(P_{min}=-2\) khi \(x=-y\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Lời giải:

$A=(x-y)+\frac{4}{x-y}+y+\frac{1}{y}$

Áp dụng BĐT Cô-si:

$(x-y)+\frac{4}{x-y}\geq 2\sqrt{(x-y).\frac{4}{x-y}}=4$
$y+\frac{1}{y}\geq 2$

$\Rightarrow A\geq 4+2=6$

Vậy $A_{\min}=6$ khi $(x,y)=(3,1)$

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

27 tháng 10 2021

\(A^2=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}+2\left(\dfrac{xy}{\sqrt{yz}}+\dfrac{yz}{\sqrt{xz}}+\dfrac{xz}{\sqrt{xy}}\right)\)

Áp dụng BĐT cosi:

\(\dfrac{x^2}{y}+\dfrac{xy}{\sqrt{yz}}+\dfrac{xy}{\sqrt{yz}}+z\ge4\sqrt[4]{\dfrac{x^4y^2z}{y^2z}}=4x\)

\(\dfrac{y^2}{z}+\dfrac{yz}{\sqrt{xz}}+\dfrac{yz}{\sqrt{xz}}+x\ge4\sqrt[4]{\dfrac{y^4z^2x}{z^2x}}=4y\)

\(\dfrac{z^2}{x}+\dfrac{xz}{\sqrt{xy}}+\dfrac{xz}{\sqrt{xy}}+y\ge4\sqrt[4]{\dfrac{z^4x^2y}{x^2z}}=4z\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow A^2+\left(x+y+z\right)\ge4\left(x+y+z\right)\\ \Leftrightarrow A^2\ge3\left(x+y+z\right)\ge3\cdot12=36\\ \Leftrightarrow A\ge6\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{12}{3}=4\)