K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

\(\sin R=\dfrac{PQ}{RQ}=\sin60^0=\dfrac{\sqrt{3}}{2}\Leftrightarrow PQ=\dfrac{\sqrt{3}}{2}\cdot6=3\sqrt{3}\)

Áp dụng PTG: \(PR=\sqrt{RQ^2-PQ^2}=\sqrt{36-27}=3\)

15 tháng 10 2021

\(\sin\widehat{R}=\dfrac{QS}{RS}=\sin60^0=\dfrac{\sqrt{3}}{2}\Leftrightarrow RS=8:\dfrac{\sqrt{3}}{2}=\dfrac{16\sqrt{3}}{3}\\ QR=\sqrt{RS^2-QS^2}=\dfrac{8\sqrt{3}}{3}\left(pytago\right)\)

15 tháng 10 2021

Ta có \(\sin\widehat{F}=\dfrac{ED}{EF}=\sin60^0=\dfrac{\sqrt{3}}{2}\Leftrightarrow EF=4\cdot\dfrac{2}{\sqrt{3}}=\dfrac{8\sqrt{3}}{3}\left(cm\right)\\ DF=\sqrt{EF^2-DE^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\left(pytago\right)\)

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

b: Xét ΔEBC có góc EBC=góc ECB

nên ΔEBC cân tại E

mà EH là đường cao

nên H là trung điểm của BC

=>HB=HC

d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEI=góc HEC

=>ΔEAI=ΔEHC

=>EI=EC>EH

30 tháng 9 2023

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
$\widehat{EMH}=90^0-\widehat{MHE}=90^0-30^0=60^0$

$ME=MH\sin \widehat{MHE}=11.\sin 60^0=\frac{11\sqrt{3}}{2}$ (cm)

$EH=MH\cos \widehat{MHE}=11\cos 60^0=\frac{11}{2}$ (cm)

13 tháng 3 2022

đều

13 tháng 3 2022

đều

12 tháng 11 2021

10h15 e nộp :((

 

12 tháng 11 2021

Câu 1;

xét ΔMNP có: \(\widehat{MPN}+\widehat{MNP}+\widehat{NMP}=180^o\\ \Rightarrow90^o+60^o+\widehat{MNP}=180^o\\ \Rightarrow\widehat{MNP}=30^o\)