Cho nửa đường tròn (O) đường kính AB, bán kính OC vuông góc với AB. Gọi M là điểm di động trên cung BC; AM cắt OC tại N. CMR :
a) AM.AN không đổi
b) CD vuông góc với AM,MNOB và AODC nội tiếp
c) Xác định M trên cung BC để tam giác COD cân tại D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 là vuông góc với AB chứ không phải vuông góc với A nha. Mình đánh nhanh nên nhầm
a: Xét (O) có
ΔMAB nội tiếp
AB là đường kính
=>ΔMAB vuông tại M
Xét tứ giác MEOB có
góc EMB+góc EOB=180 độ
=>MEOB là tứ giác nội tiếp
b: Vì M là điểm chính giữa của cung BC
nên gó MOB=góc MOC=45 độ
góc MEB=góc MOB
góc MBE=góc MOE
mà góc MOE=góc MOB
nên góc MEB=góc MBE
=>ME=MB
=>ΔMEB cân tại M
a: góc ADB=1/2*180=90 độ
góc EOB+góc EDB=180 độ
=>EOBD nội tiếp
b: Xét ΔACE và ΔADC có
góc ACE=góc ADC
góc CAE chung
=>ΔACE đồng dạng với ΔADC
=>AC^2=AE*AD
c: góc EIB=góc EDB=90 độ
=>EIDB nội tiếp
=>góc IED=góc IBD; góc IDE=góc IBE
góc IBE+góc OBE=góc IBO=45 độ
ΔEAB cân tại E
=>góc EAB=góc EBA
=>góc IBE+góc EAB=45 độ
góc IDE=góc IBE
=>góc IDE+1/2*sđ cung BD=45 độ
1/2*sđ cung BC=1/2*sđ cung CD+1/2*sđ cung DB
=>góc IED+1/2*sđ cung BD=45 độ
=>góc IDE=góc IED
=>ID=IE
góc ICE=45 độ; góc EIC=90 độ
=>ΔEIC vuôngcân tại I
=>IE=IC=ID
=>ĐPCM
a.
AB là đường kính nên \(\widehat{AMB}\) là góc nt chắn nửa đường tròn
\(\Rightarrow\widehat{AMB}=90^0\)
\(\Rightarrow M\) và O cùng nhìn BP dưới 1 góc vuông nên tứ giác OBMP nội tiếp
Mà \(PO=PM\Rightarrow\widehat{PBO}=\widehat{PBM}\)
\(\Rightarrow\Delta_VPBO=\Delta_VPBM\left(ch-gn\right)\) (có cạnh huyền PB chung)
\(\Rightarrow BM=OB=R\)
Vậy M nằm ở vị trí sao cho \(BM=R\) thì \(PO=PM\)
Áp dụng Pitago: \(AM=\sqrt{AB^2-BM^2}=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
\(\Rightarrow S_{ABM}=\dfrac{1}{2}AM.BM=\dfrac{R^2\sqrt{3}}{2}\)
b.
\(MB=MP\Rightarrow\Delta MBP\) vuông cân tại M
\(\Rightarrow\widehat{BPM}=45^0\)
Theo câu a ta có OBMP nội tiếp \(\Rightarrow\widehat{BOM}=\widehat{BPM}=45^0\) (cùng chắn BM)
\(\Rightarrow\widehat{BOM}=\dfrac{1}{2}\widehat{BOC}\) \(\Rightarrow M\) là điểm chính giữa cung BC
Khi đó kẻ \(MH\perp AB\Rightarrow\Delta MOH\) vuông cân tại H (tam giác cân có góc đáy bằng 45 độ)
\(\Rightarrow MH=\dfrac{OM}{\sqrt{2}}=\dfrac{R\sqrt{2}}{2}\)
\(S_{AMB}=\dfrac{1}{2}MH.AB=R^2\sqrt{2}\)
c.
Qua P kẻ đường thẳng song song AB cắt BC tại D
\(\Rightarrow DP\perp CP\Rightarrow\Delta CPD\) nội tiếp đường tròn đường kính CD (1)
\(\widehat{MPD}=\widehat{MAB}\) (đồng vị), mà \(\widehat{MAB}=\widehat{MCB}\) (cùng chắn BM)
\(\Rightarrow\widehat{MPD}=\widehat{MCB}\)
\(\Rightarrow\) Tứ giác MCPD nội tiếp (2 góc bằng nhau cùng chắn MD) (2)
(1);(2) \(\Rightarrow\) M,C,P cùng thuộc đường tròn đường kính CD
Hay tâm I của tam giác CPM nằm trên đường thẳng BC khi M di động trên cung BC
a) Vì \(OC\perp AB\Rightarrow\widehat{O}=90^o\)
Xét \(\left(O;\frac{AB}{2}\right)\):
\(\Delta ABM\)nt nửa đường tròn, có AB là đường kính
\(\Rightarrow\Delta ABM\)vuông tại M\(\Rightarrow\widehat{AMB}=90^o\)
Xét \(\Delta ANO\)và \(\Delta ABM\)có:
\(\widehat{BAM}\)chung
\(\widehat{AON}=\widehat{AMB}=90^o\)
\(\Rightarrow\Delta ANO\infty\Delta ABM\left(gg\right)\)\(\Rightarrow\frac{AN}{AB}=\frac{AO}{AM}\Rightarrow AN.AM=AO.AB=OA.2OA=2OA^2\)
Vì OA là bán kính của nửa đường tròn nên tích AN.AM ko đổi
b) Xét tg MNOB có \(\widehat{NMB}+\widehat{BON}=90^o+90^o=180^o\).Mà 2 góc ở vị trí đối nhau
\(\Rightarrow Tg\)MNOB là tg nt
Vì \(CD\perp AM\Rightarrow\widehat{D}=90^o\)
Xét tg AODC có: \(\widehat{AOC}=\widehat{CDA}=90^o\).Mà O và D là 2 đỉnh kề nhau nhìn cạnh AC dưới 1gocs 90 độ
\(\Rightarrow\)AODC là tg nt
c) \(\Delta COD\)cân tại D \(\Rightarrow\widehat{DCO}=\widehat{DOC}\)và CD =OD
Do AODC là tg nt \(\Rightarrow\widehat{DOC}=\widehat{DAO}\)(2 góc nt cùng chắn cung OD) và \(\widehat{DOC}=\widehat{DAC}\)(2 góc nt chắn cung CD)
Suy ra \(\widehat{DAC}=\widehat{DAO}\)
Mà \(\widehat{DAC}\)là góc nt chắn cung CM; \(\widehat{DAO}\)là góc nt chắn cung BM
\(\Rightarrow sđ\widebat{CM=sđ\widebat{BM}\Rightarrow}\)M là điểm chính giữa cung BC (vì M \(\in\)BC)
Vậy \(\Delta DOC\)cân tại D thì M là điểm chính giữa cung BC