K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED
b: ΔBAD=ΔBED

=>góc BED=góc BAD=90 độ

=>DE vuông góc BC

c: DA=DE

mà DE<DC
nên DA<DC

a: Xét ΔBAD vuông tại A và ΔBKD vuông tại K có

BD chung

\(\widehat{ABD}=\widehat{KBD}\)

Do đó: ΔBAD=ΔBKD

Suy ra: BA=BK

b: Ta có: ΔBAD=ΔBKD

nên DA=DK

mà DK<DC

nên DA<DC

6 tháng 3 2023

`a)`

Có `BD` là p/g của `hat(ABC)(GT)=>hat(B_1)=hat(B_2)`

Xét `Delta ABD` và `DElta EBD` có :

`{:(BA=BE(GT),(hat(B_1)=hat(B_2)(cmt),(BD-chung):}}`

`=>Delta ABD=Delta EBD(c.g.c)(đpcm)`

`b)`

Có `Delta ABD=Delta EBD(cmt)=>hat(A)=hat(E_1)` ( 2 góc t/ứng )

mà `hat(A)=90^0`

nên `hat(E_1)=90^0(đpcm)`

`\color {blue} \text {_Namm_}`

`a,`

Xét Tam giác `ABD` và Tam giác `EBD` có:

`BA=BE (g``t)`

\(\widehat{ABD}=\widehat{EBD}\) `(` tia phân giác \(\widehat{ABE}\) `)`

`BD` chung

`=>` Tam giác `ABD =` Tam giác `EBD (c-g-c)`

`b,` Vì Tam giác `ABD =` Tam giác `EBD (a)`

`->`\(\widehat{BAD}=\widehat{BED}\) `(2` góc tương ứng `)`

Mà góc \(\widehat{A}\) vuông `(`\(\widehat{A}=90^0\) `)`

`-> `\(\widehat{BAD}=\widehat{BED}=90^0\)

`c,` Vì Tam giác `ABD =` Tam giác `EBD (a)`

`-> DE=DA (2` cạnh tương ứng `)`

Xét Tam giác `DEC:`

\(\widehat{DEC}=90^0\) `-> DC` là cạnh lớn nhất `-> DC>DE`

Mà `DE=DA -> DC>DA`

 loading...

17 tháng 5 2018

26 tháng 4 2023

a. Xét \(2\Delta:\Delta ADB\) và \(\Delta HDB\) có:

\(\left\{{}\begin{matrix}\widehat{ABD}=\widehat{HBD}\\BD.chung\end{matrix}\right.\Rightarrow\Delta ADB=\Delta HDB\) (cạnh huyền - góc nhọn)

\(\Rightarrow DA=DH\)

b. Xét \(2\Delta:\Delta KAD\) và \(\Delta CHD\) có:

\(\left\{{}\begin{matrix}\widehat{KDA}=\widehat{CDH}\left(đối.đỉnh\right)\\AD=DH\left(câu.a\right)\end{matrix}\right.\)

\(\Rightarrow\Delta KAD=\Delta CHD\) (cạnh góc vuông - góc nhọn kề)

\(\Rightarrow DK=DC\Rightarrow\Delta KDC.cân\)

c. Ta có DC = DK

Mà \(\Delta KAD\) vuông tại A có cạnh huyền là DK

\(\Rightarrow AD< DK\) hay \(DA< DC\)

a: Xet ΔBAD vuông tại A và ΔBHD vuông tại H co

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: Xet ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

góc ADK=góc HDC

=>ΔDAK=ΔDHC

=>DK=DC

c: DA=DH

DH<DC

=>DA<DC