K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔMNP có MD là đường phân giác ứng với cạnh NP(gt)

nên \(\frac{ND}{NM}=\frac{DP}{PM}\)

\(\Leftrightarrow\frac{ND}{8}=\frac{7.5}{10}\)

hay \(ND=\frac{7.5\cdot8}{10}=\frac{60}{10}=6cm\)

Vậy: ND=6cm

b) Xét ΔMNP có DC//MP(gt)

nên \(\frac{NC}{CM}=\frac{ND}{DP}\)

\(\Leftrightarrow\frac{NC}{CM}=\frac{6}{7.5}\)

hay \(\frac{NC}{6}=\frac{CM}{7.5}\)

Ta có: NC+CM=MN=8cm(C nằm giữa N và M)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{NC}{6}=\frac{CM}{7.5}=\frac{NC+CM}{6+7.5}=\frac{NM}{13.5}=\frac{8}{13.5}=\frac{16}{27}\)

Do đó: \(\frac{NC}{6}=\frac{16}{27}\)

\(\Leftrightarrow NC=\frac{16\cdot6}{27}=\frac{96}{27}=\frac{32}{9}\simeq3.55cm\)

Vậy: NC\(\simeq\)3,55cm

a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)

b: Xét ΔMNP vuông tại M có MH là đường cao

nên MH*NP=MN*MP

=>MH*10=6*8=48

=>MH=4,8cm

Xét ΔMNP có MD là phân giác

nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)

c: MN*sinP+MP*sinN

=MN*MN/NP+MP*MP/NP

=(MN^2+MP^2)/NP

=NP^2/NP

=NP

a) Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(NP^2=MN^2+MP^2\)

\(\Leftrightarrow NP^2=36^2+48^2=3600\)

hay NP=60(cm)

Xét ΔMNP có MK là đường phân giác ứng với cạnh NP(gt)

nên \(\dfrac{NK}{MN}=\dfrac{KP}{MP}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{NK}{36}=\dfrac{KP}{48}\)

mà NK+KP=NP=60cm(K nằm giữa N và P)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{NK}{36}=\dfrac{KP}{48}=\dfrac{NK+KP}{36+48}=\dfrac{60}{84}=\dfrac{5}{7}\)

Do đó:

\(\dfrac{NK}{36}=\dfrac{5}{7}\)

hay \(NK=\dfrac{180}{7}cm\)

Vậy: \(NK=\dfrac{180}{7}cm\)

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

26 tháng 6 2020

a. xét tg MND và tg MPD có : MD chung

^PMD = ^NMD do MD là pg của ^PMN (Gt)

MN = MP do tg MNP cân tại M (gt)

=> tg MND = tg MPD (c-g-c)

b. tg MNP cân tại A (gt) có MD là pg

=> MD đồng thời là đường cao (đl) và là trung tuyến => DN = 6

=> tg MND vuông tại D  (Đn)

=> MN^2 = MD^2 + DN^2 (đl Pytago)

DN = 6; MN =10

=> MD = 8 do MD > 0

c.

26 tháng 6 2020

kjhkmbnm,u

Chọn D

13 tháng 9 2023

Vì \(MD\) là tia phân giác góc \(M\left( {D \in NP} \right)\) nên theo tính chất đường phân giác ta có:

\(\frac{{DN}}{{DP}} = \frac{{MN}}{{MP}};\frac{{DN}}{{MN}} = \frac{{DP}}{{MP}};\frac{{DP}}{{DN}} = \frac{{MP}}{{MN}};\frac{{DP}}{{MP}} = \frac{{DN}}{{MN}}\)