K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

nói chứ toán của anh choa đăng cho vi hihi

26 tháng 4 2015

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0

suy ra x^2 + y^2 + z^2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0

Vậy S = 0

1 tháng 6 2015

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0

suy ra x^2 + y^2 + z^2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0

Vậy S = 0

11 tháng 12 2015

Ta có 0= (x + y + z)= x+ y2 + z+ 2(xy + yz + zx) = x+ y+ z+ 2.0 

=> x+ y+ z= 0 <=> z = y = z = 0 

=> S = (0 - 1)1995 + 01996 + (0 + 1)1997 = -1 + 1 = 0

11 tháng 12 2015

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0

1 tháng 6 2015

Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0

suy ra x^2 + y^2 + z^2 = 0

suy ra x = y = z = 0

Thay vào S, ta được:

S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0

Vậy S = 0

1 tháng 6 2015

copy trong câu hỏi tương tự à 

20 tháng 11 2021

\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)

\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)

20 tháng 11 2021

Cảm ơn anh rất nhìu

6 tháng 11 2017

Ta có :\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=0\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=x^2+y^2+z^2=0\) (do xy + yz + xz = 0)

Ta lại thấy \(x^2;y^2;z^2\ge0\forall x;y;z\) nên \(x^2+y^2+z^2\ge0\forall x;y;z\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\) thay vào S ta được :

\(S=\left(-1\right)^{2005}+\left(-1\right)^{2006}+1^{2007}=1\)

8 tháng 3 2018

ta có : xy + yz +zx = 0

        * yz = -xy-zx

\(\Rightarrow\)*xy = - yz - zx

         *zx= -xy-yz

ta có : M = \(\frac{xy}{z}+\frac{zx}{y}+\frac{yz}{x}\)

          M = \(\frac{-yz-zx}{z}+\frac{-xy-yz}{y}+\frac{-xy-zx}{x}\)

          M = \(\frac{z\times\left(-y-x\right)}{z}+\frac{y\times\left(-x-z\right)}{y}+\frac{x\times\left(-y-z\right)}{x}\)

          M = -y - x - x - z - y - z

         M = -2y - 2x - 2z

         M = -2( x+y+z )

   mà x+y+z=-1

         M = (-2) . (-1)

         M =2

     

8 tháng 3 2018

 Quản lý

7 tháng 6 2021

\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)

Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)

22 tháng 9 2020

2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)

lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)

lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\) 

lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)

cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)

22 tháng 9 2020

1) \(a=x^2-xy=x\left(x-y\right)\ne0\left(x\ne0,x\ne y\right)\)