cho tam giác abc nhọn nội tiếp (o) các đường cao ad be cf cắt nhau tại h. Vẽ đường kính AQ của (O).
a) Chứng minh tứ giác AEHF là tứ giá nội tiếp.
b)Chứng minh AB.QC=AQ.BD.
c)Gọi I là trung điểm BC. Chứng minh AH=2OI.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: Xet ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
=>ΔBDH đồng dạng với ΔBEC
=>BH/BC=DH/EC
=>BH*EC=DH*BC
a: góc BFC=góc BEC=90 độ
=>BCEF nội tiếp
góc AEH+góc AFH=180 dộ
=>AEHF nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
=>BK//CH
góc ACK=1/2*sđ cung AK=90 độ
=>CK//BH
=>BHCK là hình bình hành
=>H đối xứng K qua M
a:
H đối xứng K qua BC
=>BH=BK CH=CK
Xét ΔBHC và ΔBKC có
BH=BK
HC=KC
BC chung
=>ΔBHC=ΔBKC
=>góc BHC=góc BKC
góc BHC=180 độ-góc HBC-góc HCB
=90 độ-góc HBC+90 độ-góc HCB
=góc ABC+góc ACB
=180 độ-góc BAC
=>góc BAC+góc BHC=180 độ
=>góc BAC+góc BKC=180 độ
=>ABKC là tứ giác nội tiếp
b: Xét (O) có
ΔABM nội tiếp
AM là đường kính
=>ΔABM vuông tại B
=>BM//CH
Xét (O) có
ΔACM nội tiếp
AM là đường kinh
=>ΔACM vuông tại C
=>CM//BH
mà BM//CH
nên BHCM là hình bình hành
=>CB căt HM tại trung điểm của mỗi đường
=>H,I,M thẳng hàng
a) Xét tứ giác BFHD có
\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối
\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) theo gt, BFC=BEC=90
=> BFEC nội tiếp (có 2 góc kề bang nhau)
góc AFC=ADC=90 => AFDC nội tiếp ( có 2 cạnh kề cùng nhìn một đoan thẳng bằng nhau)
b) vì tứ giác ABA'C nội tiếp => ABC = AA'C (cùng chắn cung AC)
Lại có ABC= AHF (Cùng phụ với góc BAD)
Ta thấy AFHE nội tiếp vì AFH +AEH = 90+90=180
=> AHF=AEF (Cùng chắn cung AF)
=>Đpcm
c) vì tứ giác EQA'C nôi tiếp
nên EQA'+ECA'=180 mà ECA'=90 vì là góc nội tiếp chắn nửa đường tròn
=> MQP=EQA'=90 ( vì MQP+EQA=180)
Trong đó ADC=90 =>Đpcm
d) Vì ABA'C VÀ FBDH nội tiếp nên góc NA'C=ABC=DHC
=>NA'C=DHC=>Đpcm
Lời giải:
a) Tứ giác $AFHE$ có tổng 2 góc đối nhau $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.
b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)
Xét tam giác $ABD$ và $AKC$ có:
$\widehat{ADB}=\widehat{ACK}=90^0$
$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)
$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)
$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$
$\Rightarrow AB.AC=AD.AK$ (đpcm)
Mình viết gợi ý thôi nhé:
a) Tứ giác AEHF có hai góc vuông E và F có tổng bằng 180o nên là tứ giác nội tiếp.
b) Hai tam giác ABD và AQC đồng dạng nên \(\dfrac{AB}{AQ}=\dfrac{BD}{QC}\), suy ra \(AB.QC=BD.AQ.\)
c) Ý tưởng: cần chứng minh Q, I, H thẳng hàng.
Xét tứ giác BHCQ có:
+) BH // QC (cùng vuông góc với AC)
+) CH // BQ ( ... )
Do đó tứ giác BHCQ là tứ giác nội tiếp, nên hai đường chéo BC và QH cắt nhau tại trung điểm của mỗi đường.
Từ đó I là trung điểm của QH, OI là đường trung bình của tam giác AQH nên AH = 2OI.