K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

undefined

Mình viết gợi ý thôi nhé:

a) Tứ giác AEHF có hai góc vuông E và F có tổng bằng 180o nên là tứ giác nội tiếp.

b) Hai tam giác ABD và AQC đồng dạng nên \(\dfrac{AB}{AQ}=\dfrac{BD}{QC}\), suy ra \(AB.QC=BD.AQ.\)

c) Ý tưởng: cần chứng minh Q, I, H thẳng hàng.

Xét tứ giác BHCQ có:

+) BH // QC (cùng vuông góc với AC)

+) CH // BQ ( ... )

Do đó tứ giác BHCQ là tứ giác nội tiếp, nên hai đường chéo BC và QH cắt nhau tại trung điểm của mỗi đường.

Từ đó I là trung điểm của QH, OI là đường trung bình của tam giác AQH nên AH = 2OI.

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: Xet ΔBDH vuông tại D và ΔBEC vuông tại E có

góc DBH chung

=>ΔBDH đồng dạng với ΔBEC

=>BH/BC=DH/EC

=>BH*EC=DH*BC

a: góc BFC=góc BEC=90 độ

=>BCEF nội tiếp

góc AEH+góc AFH=180 dộ

=>AEHF nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

=>BK//CH

góc ACK=1/2*sđ cung AK=90 độ

=>CK//BH

=>BHCK là hình bình hành

=>H đối xứng K qua M

14 tháng 3 2021

ai đó làm giúp với

 

a:

H đối xứng K qua BC

=>BH=BK CH=CK

Xét ΔBHC và ΔBKC có

BH=BK

HC=KC

BC chung

=>ΔBHC=ΔBKC

=>góc BHC=góc BKC

góc BHC=180 độ-góc HBC-góc HCB

=90 độ-góc HBC+90 độ-góc HCB

=góc ABC+góc ACB

=180 độ-góc BAC

=>góc BAC+góc BHC=180 độ

=>góc BAC+góc BKC=180 độ

=>ABKC là tứ giác nội tiếp

b: Xét (O) có

ΔABM nội tiếp

AM là đường kính

=>ΔABM vuông tại B

=>BM//CH

Xét (O) có

ΔACM nội tiếp

AM là đường kinh

=>ΔACM vuông tại C

=>CM//BH

mà BM//CH

nên BHCM là hình bình hành

=>CB căt HM tại trung điểm của mỗi đường

=>H,I,M thẳng hàng

a) Xét tứ giác BFHD có 

\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối

\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BFHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) cùng nhìn cạnh BC một góc bằng 900

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

 

12 tháng 3 2022

 

a) theo gt, BFC=BEC=90

=> BFEC nội tiếp (có 2 góc kề bang nhau)

góc AFC=ADC=90 => AFDC nội tiếp ( có 2 cạnh kề cùng nhìn một đoan thẳng bằng nhau) 

b) vì tứ giác ABA'C nội tiếp => ABC = AA'C (cùng chắn cung AC)

Lại có ABC= AHF (Cùng phụ với góc BAD)

Ta thấy AFHE nội tiếp vì AFH +AEH = 90+90=180

=> AHF=AEF (Cùng chắn cung AF)

=>Đpcm

c) vì tứ giác EQA'C nôi tiếp

nên EQA'+ECA'=180 mà ECA'=90 vì là góc nội tiếp chắn nửa đường tròn

=> MQP=EQA'=90 ( vì MQP+EQA=180)

Trong đó ADC=90 =>Đpcm

d) Vì ABA'C VÀ FBDH nội tiếp nên góc NA'C=ABC=DHC

=>NA'C=DHC=>Đpcm

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

a) Tứ giác $AFHE$ có tổng 2 góc đối nhau  $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.

b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)

Xét tam giác $ABD$ và $AKC$ có:

$\widehat{ADB}=\widehat{ACK}=90^0$

$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)

$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)

$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$

$\Rightarrow AB.AC=AD.AK$ (đpcm)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Hình vẽ:

undefined