tính\(\sqrt{7-4\sqrt{3}}+\sqrt{3}\)
gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)sqrt{4+sqrt7}-sqrt{4-sqrt7}`
`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`
`=sqrt{(7+2sqrt7+1)/2}-sqrt{(7-2sqrt7+1)/2}`
`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7-1)^2/2}`
`=(sqrt7+1)/sqrt2-(sqrt7-1)/sqrt2`
`=2/sqrt2=sqrt2`
`b)sqrt{4--sqrt15}-sqrt{4+sqrt15}`
`=sqrt{(8-2sqrt15)/2}-sqrt{(8+2sqrt15)/2}`
`=sqrt{(5-2sqrt{5.3}+3)/2}-sqrt{(5+2sqrt{5.3}+3)/2}`
`=sqrt{(sqrt5-sqrt3)^2/2}-sqrt{(sqrt5+sqrt3)^2/2}`
`=(sqrt5-sqrt3)/sqrt2-(sqrt5+sqrt3)/sqrt2`
`=(-2sqrt3)/sqrt2=-sqrt6`
`c)sqrt{2+sqrt3}+sqrt{2-sqrt3}`
`=sqrt{(4+2sqrt3)/2}+sqrt{(4-2sqrt3)/2}`
`=sqrt{(3+2sqrt3+1)/2}+sqrt{(3-2sqrt3+1)/2}`
`=sqrt{(sqrt3+1)^2/2}+sqrt{(sqrt3-1)^2/2}`
`=(sqrt3+1)/sqrt2+(sqrt3-1)/sqrt2`
`=(2sqrt3)/sqrt2=sqrt6`
`d)sqrt{9+sqrt17}-sqrt{9-sqrt17}`
`=sqrt{(18+2sqrt17)/2}-sqrt{(18-2sqrt17)/2}`
`=sqrt{(17+2sqrt17+1)/2}-sqrt{(17-2sqrt17+1)/2}`
`=sqrt{(sqrt17+1)^2/2}-sqrt{(sqrt17-1)^2/2}`
`=(sqrt17+1)/sqrt2-(sqrt17-1)/sqrt2`
`=2/sqrt2=sqrt2`
a: Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\sqrt{2}\)
b: Ta có: \(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}\)
\(=\dfrac{\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
\(A=3\sqrt{2}+5\sqrt{8}-2\sqrt{50}\)
\(=3\sqrt{2}+10\sqrt{2}-10\sqrt{2}\)
\(=3\sqrt{2}\)
c)
\(\sqrt{2}C=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)
\(=\sqrt{5}+1-\left(\sqrt{5}-1\right)-2=0\Rightarrow C=0\)
b)
\(B=3\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)-\sqrt{5}\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)\)
\(\Rightarrow\sqrt{2}B=3\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)-\sqrt{5}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)\)
\(=3\left(\sqrt{5}+1+\sqrt{5}-1\right)-\sqrt{5}\left(\sqrt{5}+1-\sqrt{5}+1\right)\)
\(\sqrt{2}B=6\sqrt{5}-2\sqrt{5}=4\sqrt{5}\Rightarrow B=2\sqrt{10}\)
C)√3+√5−√3−√5−√2b) (3−√5)√3+√5+(3+√5)√3−√5d) √4−√7−√4+√7+√7e) √6,5+√12+√6,5−√12+2√6mình cần giải gấp ạ
Đặt \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
\(\Leftrightarrow A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\cdot\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(\Leftrightarrow A^3=4+3\cdot\left(-1\right)\cdot A\)
\(\Leftrightarrow A^3=4-3A\)
\(\Leftrightarrow A^3+3A-4=0\)
\(\Leftrightarrow A^3-A^2+A^2-A+4A-4=0\)
\(\Leftrightarrow A^2\left(A-1\right)+A\left(A-1\right)+4\left(A-1\right)=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)
\(\Leftrightarrow A=1\)
\(b,\sqrt{2}.\sqrt{7+3\sqrt{5}}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{14+6\sqrt{5}}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{\sqrt{5^2}+2.3\sqrt{5}+3^2}-\dfrac{4}{\sqrt{5}-1}\\ =\sqrt{\left(\sqrt{5}+3\right)^2}-\dfrac{4}{\sqrt{5}-1}\\ =\left|\sqrt{5}+3\right|-\dfrac{4}{\sqrt{5}-1}\\ =\dfrac{\left(\sqrt{5}+3\right)\left(\sqrt{5}-1\right)-4}{\sqrt{5}-1}\\ =\dfrac{2+2\sqrt{5}-4}{\sqrt{5}-1}\\ =\dfrac{-2+2\sqrt{5}}{\sqrt{5}-1}\\ =\dfrac{2\left(-1+\sqrt{5}\right)}{\sqrt{5}-1}\\ =2\)
\(c,\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\\ =3\sqrt{3}-\dfrac{6}{\sqrt{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
\(=\dfrac{3\sqrt{3}.\sqrt{3}-6+\sqrt{3}-3}{\sqrt{3}}\\ =\dfrac{9-6+\sqrt{3}-3}{\sqrt{3}}\\ =\dfrac{\sqrt{3}}{\sqrt{3}}\\ =1\)
\(d,\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\\ =\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}\\ =\dfrac{27\sqrt{6}+18\sqrt{2}-18\sqrt{2}-4\sqrt{6}}{\left(3\sqrt{6}\right)^2-\left(2\sqrt{2}\right)^2}\\ =\dfrac{23\sqrt{6}}{54-8}\\ =\dfrac{23\sqrt{6}}{46}\\ =\dfrac{\sqrt{6}}{2}\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
a) đặt A = \(\sqrt{14+8\sqrt{3}}.\left(2\sqrt{2}+\sqrt{3}\right)\)
=> \(A^2=\left(14+8\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)^2\)
\(=\left(14+8\sqrt{3}\right)\left(14+8\sqrt{3}\right)\)
\(=\left(14+8\sqrt{3}\right)^2\)
=> A = \(14+8\sqrt{3}\)
b) đặt B = \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
=> \(B^2=\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
= \(4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)
= \(8-2\sqrt{9}\)
\(=8-6=2\)
=> C = \(\sqrt{2}\)
c) đặt C = \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
=> \(C^2=\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=3-\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}+3+\sqrt{5}\)
\(=6+2\sqrt{1}\) \(=8\)
=> C = \(\sqrt{8}\)
mong bài mk đúng :)~~
\(\sqrt{7-4\sqrt{3}}+\sqrt{3}=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{3}=2-\sqrt{3}+\sqrt{3}=2\)