\(\dfrac{3x-2}{4}=\dfrac{9}{3x-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(B=\left(\dfrac{x}{3x-9}+\dfrac{2x-3}{3x-x^2}\right)\cdot\dfrac{3x^2-9x}{x^2+6x+9}\)
\(=\left(\dfrac{x}{3\left(x-3\right)}-\dfrac{2x-3}{x\left(x-3\right)}\right)\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)
\(=\left(\dfrac{x^2}{3x\left(x-3\right)}-\dfrac{3\left(2x-3\right)}{3x\left(x-3\right)}\right)\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)
\(=\dfrac{x^2-6x+9}{3x\left(x-3\right)}\cdot\dfrac{3x\left(x-3\right)}{\left(x+3\right)^2}\)
\(=\dfrac{x^2-6x+9}{x^2+6x+9}\)
b) Ta có: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\dfrac{1}{x+2}\)
\(=\left(\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{1}{x+2}\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{1}\)
\(=\dfrac{-6}{x-2}\)
a: \(\dfrac{x^2}{3x+6}+\dfrac{4x+4}{3x+6}=\dfrac{x^2+4x+4}{3x+6}=\dfrac{x+2}{3}\)
b: \(\dfrac{x+3}{x}+\dfrac{x}{3-x}-\dfrac{9}{3x-x^2}\)
\(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}\)
=0
\(\dfrac{3-3x}{x^2-9}\cdot\dfrac{x-3}{x-1}\\ =\dfrac{3\left(1-x\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x-1\right)}\\ =\dfrac{-3\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x-1\right)}\\ =-\dfrac{3}{x+3}\\ \dfrac{6x+4}{x^2-4}\cdot\dfrac{x^2-2x}{3x+2}\\ =\dfrac{2\left(3x+2\right)x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)\left(3x+2\right)}\\ =\dfrac{2x}{x+2}\)
a) Ta có: \(\dfrac{9-3x}{x^2+3x+4}-\dfrac{3x-23}{\left(1-x\right)\left(x+4\right)}\)
\(=\dfrac{9-3x}{x^2+3x+4}+\dfrac{3x-23}{x^2+3x-4}\)
\(=\dfrac{\left(9-3x\right)\left(x^2+3x-4\right)}{\left(x^2+3x+4\right)\left(x^2+3x-4\right)}+\dfrac{\left(3x-23\right)\left(x^2+3x+4\right)}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
\(=\dfrac{9x^2+27x-36-3x^3-9x^2+12x+3x^3+9x^2+12x-23x^2-69x-92}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
\(=\dfrac{-14x^2-18x-128}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
b) Ta có: \(\dfrac{4-x}{x^3+2x}-\dfrac{x+5}{x^3-x^2+2x-2}\)
\(=\dfrac{4-x}{x\left(x^2+2\right)}-\dfrac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
\(=\dfrac{4-x}{x\left(x^2+2\right)}-\dfrac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\dfrac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{4x-4-x^2+x-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2}{x\left(x-1\right)}\)
\(a,=\dfrac{2\left(2x^2+1\right).\left(3x+2\right).2\left(2-x\right)}{\left(x-2\right)\left(x-4\right)\left(2x^2+1\right)}=\dfrac{-4.\left(3x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=\dfrac{-4\left(3x+2\right)}{x-4}\\ b,=\dfrac{\left(x+3\right).\left(x+2\right)}{x.\left(x+3\right)^2}\times\dfrac{x\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+3\right)\left(x+2\right)x\left(x+3\right)}{x.\left(x+3\right)^2.\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\)
1: Ta có: \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)
\(\Leftrightarrow\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{4x-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-7}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(3x+9+4x-12=3x-7\)
\(\Leftrightarrow4x=-7+12-9=-4\)
hay \(x=-1\left(nhận\right)\)
2: Ta có: \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)
\(\Leftrightarrow\dfrac{3x+12}{\left(x-4\right)\left(x+4\right)}-\dfrac{4x-16}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x-4}{\left(x-4\right)\left(x+4\right)}\)
Suy ra: \(3x+12-4x+16=3x-4\)
\(\Leftrightarrow28-4x=-4\)
\(\Leftrightarrow4x=32\)
hay \(x=8\left(tm\right)\)
3: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)
Suy ra: \(5x^2-12+3x+3=5x^2-5x\)
\(\Leftrightarrow3x-9+5x=0\)
\(\Leftrightarrow8x=9\)
hay \(x=\dfrac{9}{8}\left(nhận\right)\)
a, \(\dfrac{x^3+27}{x^2-3x+9}=\dfrac{x+3}{M}\Leftrightarrow\dfrac{\left(x+3\right)\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{x+3}{M}\)
\(\Rightarrow M=\dfrac{x+3}{x+3}=1\)
b, \(\dfrac{M}{x+4}=\dfrac{x^2-8x+16}{16-x^2}=\dfrac{\left(x-4\right)^2}{\left(4-x\right)\left(x+4\right)}=\dfrac{4-x}{x+4}\)
\(\Rightarrow M=\dfrac{\left(4-x\right)\left(x+4\right)}{x+4}=4-x\)
c, tương tự
\(\begin{array}{l} n) \Leftrightarrow \dfrac{{x + 1}}{7} + 1 + \dfrac{{x + 2}}{6} + 1 = \dfrac{{x + 3}}{5} + 1 + \dfrac{{x + 4}}{4} + 1\\ \Leftrightarrow \dfrac{{x + 8}}{7} + \dfrac{{x + 8}}{6} - \dfrac{{x + 8}}{5} - \dfrac{{x + 8}}{4} = 0\\ \Leftrightarrow \left( {x + 8} \right)\underbrace {\left( {\dfrac{1}{7} + \dfrac{1}{8} - \dfrac{1}{5} - \dfrac{1}{6}} \right)}_{ < 0} = 0\\ \Leftrightarrow x + 8 = 0\\ \Leftrightarrow x = - 8 \end{array}\)
k/
\(8-\dfrac{x-2}{3}=\dfrac{x}{4}\)
\(\Leftrightarrow\dfrac{96}{12}-\dfrac{4\left(x-2\right)}{12}=\dfrac{3x}{12}\)
\(\Leftrightarrow96-4x+8=3x\)
\(\Leftrightarrow96-4x+8-3x=0\)
\(\Leftrightarrow104-7x=0\)
\(\Leftrightarrow7x=104\)
\(\Leftrightarrow x=104:7\)
\(\Leftrightarrow x=\dfrac{104}{7}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{104}{7}\right\}\)
m/
\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow9x+6-3x-1-12x-10=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{5}{6}\right\}\)
\(4.3^x+3^{x+1}=63\)
\(\Rightarrow4.3^x+3.3^x=63\)
\(\Rightarrow7.3^x=63\Rightarrow3^x=9=3^2\Rightarrow x=2\)
\(9.\left(\dfrac{2}{3}\right)^{x+2}-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)
\(\Rightarrow9.\left(\dfrac{2}{3}\right)^2\left(\dfrac{2}{3}\right)^x-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)
\(\Rightarrow9.\dfrac{4}{9}^{ }.\left(\dfrac{2}{3}\right)^x-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x.\left(4-1\right)=\dfrac{4}{3}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x.\dfrac{1}{3}=\dfrac{4}{3}\Rightarrow\left(\dfrac{2}{3}\right)^x=4\)
mà \(0< \left(\dfrac{2}{3}\right)^x< 1;4>0;x>0\)
\(\Rightarrow x\in\varnothing\)
\(\dfrac{3x-2}{4}=\dfrac{9}{3x-2}\\ \Rightarrow\left(3x-2\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}3x-2=-6\\3x-2=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{8}{3}\end{matrix}\right.\)
\(\dfrac{3x-2}{4}=\dfrac{9}{3x-2}\left(đk:x\ne\dfrac{2}{3}\right)\)
\(\Rightarrow\left(3x-2\right)^2=36\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=6\\3x-2=-6\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{4}{3}\end{matrix}\right.\)