Cho các số thực dươngía trị nhỏ nhất của biểu thức P=1/a^2+b^2 +9/ab + 8ab+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ làm được 1 tý thôi:
\(a+b+1=8ab\Rightarrow\frac{a+b+1}{ab}=\frac{8ab}{ab}\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}+\frac{1}{ab}=8.\)
Đáp án là 8 á. xảy ra khi a=b=\(\frac{1}{2}\) nhưng mình k biết cách làm.
\(P=\dfrac{9}{ab+bc+ca}+\dfrac{2}{a^2+b^2+c^2}\)
\(=2\left[\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\right]+\dfrac{5}{ab+bc+ca}\)
\(\ge2.\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{5}{ab+bc+ca}\)
\(=\dfrac{18}{1}+\dfrac{5}{ab+bc+ca}\ge18+5.\dfrac{3}{\left(a+b+c\right)^2}=18+15=33\)
Đẳng thức xảy ra khi a=b=c=1/3.
Vậy GTNN của P là 33.
1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
2/
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)
\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)
\(\Rightarrow P_{min}=18\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=2(\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{1}{a^2+b^2+c^2})+\frac{1}{2(ab+bc+ac)}\\
\geq 2.\frac{9}{2(ab+bc+ac)+a^2+b^2+c^2}+\frac{1}{2(ab+bc+ac)}\\
=\frac{18}{(a+b+c)^2}+\frac{1}{2(ab+bc+ac)}\\
=18+\frac{1}{2(ab+bc+ac)}\)
Áp dụng BĐT AM-GM:
$2(ab+bc+ac)\leq 2.\frac{(a+b+c)^2}{3}=\frac{2}{3}$
$\Rightarrow \frac{1}{2(ab+bc+ac)}\geq \frac{3}{2}$
$\Rightarrow P\geq 18+\frac{3}{2}=\frac{39}{2}$
Vậậy $P_{\min}=\frac{39}{2}$ khi $a=b=c=\frac{1}{3}$
Ta có: 2P=(a2+b2) + (b2+c2) + (c2+a2)
Theo Cauchy có:
\(2P\ge2ab+2bc+2ca=2\left(ab+bc+ca\right)=2.9\)
=> \(P\ge9\)=> Pmin = 9 đạt được khi x=y=\(\sqrt{3}\)
Hoặc:
P2= (a2+b2+c2)(b2+c2+a2)
Theo Bunhiacopxki có:
P2= (a2+b2+c2)(b2+c2+a2) \(\ge\)(ab+bc+ca)2=92
=> P\(\ge\)9 => Pmin=9
Vì \(a\ge1,b\ge1,c\ge1\)(gt) => \(\left(a-1\right)\left(b-1\right)\ge0\)<=> ab -a -b + 1 \(\ge0\)(1)
\(\left(b-1\right)\left(c-1\right)\ge0\)<=> bc - b - c + 1 \(\ge0\)(2)
\(\left(c-1\right)\left(a-1\right)\ge0\)<=> ca -c - a + 1 \(\ge0\)(3)
Cộng từng vế của (1), (2) và (3) ta được:
ab + bc + ca -2(a +b +c) + 3 \(\ge0\)
=> \(a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)
Mà \(a\ge1,b\ge1,c\ge1\Rightarrow a+b+c\ge3\)=> \(3\le a+b+c\le6\)=> \(\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\le36\)
=> \(a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-2\times9=18\)=> P \(\le18\)
Vậy GTLN của P là 18
Dâu "=" xảy ra khivà chỉ khi:
a =b=1, c=4
hoặc: b=c=1, a=4
hoặc: c=a=1, b=4
Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:
a 2 + b 2 ≥ 2 a b , b 2 + c 2 ≥ 2 b c , c 2 + a 2 ≥ 2 c a
Do đó: 2 a 2 + b 2 + c 2 ≥ 2 ( a b + b c + c a ) = 2.9 = 18 ⇒ 2 P ≥ 18 ⇒ P ≥ 9
Dấu bằng xảy ra khi a = b = c = 3 . Vậy MinP= 9 khi a = b = c = 3
Vì a , b , c ≥ 1 , nên ( a − 1 ) ( b − 1 ) ≥ 0 ⇔ a b − a − b + 1 ≥ 0 ⇔ a b + 1 ≥ a + b
Tương tự ta có b c + 1 ≥ b + c , c a + 1 ≥ c + a
Do đó a b + b c + c a + 3 ≥ 2 ( a + b + c ) ⇔ a + b + c ≤ 9 + 3 2 = 6
Mà P = a 2 + b 2 + c 2 = a + b + c 2 − 2 a b + b c + c a = a + b + c 2 – 18
⇒ P ≤ 36 − 18 = 18 . Dấu bằng xảy ra khi : a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1
Vậy maxP= 18 khi : a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+4\geq 2\sqrt{4a^2}=|4a|\geq 4a$
$b^2+4\geq |4b|\geq 4b$
$2(a^2+b^2)\geq 4|ab|\geq 4ab$
Cộng theo vế và thu gọn:
$3(a^2+b^2)+8\geq 4(a+b+ab)=32$
$\Rightarrow a^2+b^2\geq 8$
Vậy $a^2+b^2$ min bằng $8$. Giá trị này đạt tại $a=b=2$
Áp dụng BĐT cosi:
`a^2+4>=4a`
`b^2+4>=4b`
`=>a^2+b^2+8>=4(a+b)(1)`
Áp dụng cosi:
`a^2+b^2>=2ab`
`=>2(a^2+b^2)>=4ab(2)`
Cộng từng vế (1)(2) ta có:
`3(a^2+b^2)+8>=4(a+b+ab)=32`
`<=>3(a^2+b^2)>=24`
`<=>(a^2+b^2)>=8`
Dấu "=" `<=>a=b=2`