K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 6 2020

Lời giải:
Ta thấy:

$x^4\geq 0, \forall x\in\mathbb{R}$

$x^2\geq 0, \forall x\in\mathbb{R}$

$\Rightarrow A(x)=3x^4+x^2+2018\geq 2018>0$ với mọi $x$

$\Rightarrow A(x)\neq 0$ với mọi $x$

Hay $A(x)$ không có nghiệm (đpcm)

10 tháng 5 2018

ta có       \(3x^4\ge0\)    với mọi x

               \(x^2\ge0\)   với mọi x

\(\Rightarrow3x^4+x^2+2018\ge2018\) với mọi x

\(\Rightarrow A(x)\ge2018\)  với mọi x

\(\Rightarrow A(x)>0\) với mọi x

\(\Rightarrow A\left(x\right)\ne0\) với mọi x

\(\Rightarrow\) đa thức A(x) không có nghiệm

                                       điều phải chứng minh

10 tháng 5 2018

Vì \(3x^4\ge0\forall x;x^2\ge0\forall x\)

\(\Rightarrow3x^4+x^2\ge0\)

\(\Rightarrow A\left(x\right)=3x^4+x^2+2018\ge2018>0\)

Vậy...

24 tháng 4 2023

\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm

Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x

=>Q(x) vô nghiệm

7 tháng 5 2022

\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)

\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)

vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)

7 tháng 5 2022

thu gọn

\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)

\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)

20 tháng 4 2016

Thay x=1 vào A(x) tính được A(x)=-17 nên x=1 ko là nghiệm của A(x)

Thay x=1 vào B(x), B(x)=0 nên x=1 là nghiệm B(x)

7 tháng 5 2022

b)\(B\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(B\left(x\right)=x^3+4x^3+3x-6x-4-x^2-x^3-x^2+3x+8\)

\(B\left(x\right)=4x^3-2x^2+4\)

 

7 tháng 5 2022

c) \(B\left(x\right)=4x^3-2x^2+4\)

\(B\left(x\right)=2.2xx^2-2x^2+4\)

\(B\left(x\right)=2x^2\left(2x-1\right)+4\)

ta có

\(2x^2\ge0\forall x\in R\)

\(=>2x^2\left(2x-1\right)\ge0\)

mà 4 > 0

\(=>2x^2\left(2x-1\right)+4>0\)

hay B(x) > 0 

vậy B(x) ko  có nghiệm

22 tháng 4 2018
vì3x^4>hoặc=0 voi moi x va x^2>hoac=0 voi moi x =>3x^4+x^2>hoac=0 voi moi x =>3x^4+x^2+2018>hoặc=0 voi moi x =>3x^4+x^2+2018>0 voi moi x => da thuc A(x)=3x^4+x^2+2018 k co nhiệm
8 tháng 6 2018

Cách khác (đơn giản hơn)

Giải:

Ta xét từng hạng tử trong đa thức:

\(3x^4\ge0\)

\(x^2\ge0\)

\(2018>0\)

Cộng theo vế, ta được:

\(3x^4+x^2+2018\ge2018>0\)

Kết luận ...

8 tháng 6 2018

Giải:

Ta có:

\(x^4\ge0;\forall x\)

\(\Leftrightarrow3x^4\ge0;\forall x\)

\(\Leftrightarrow3x^4+x^2\ge0;\forall x\)

\(\Leftrightarrow3x^4+x^2+2018\ge2018;\forall x\)

\(\Leftrightarrow3x^4+x^2+2018>0;\forall x\)

\(\Leftrightarrow3x^4+x^2+2018\ne0;\forall x\)

\(\Leftrightarrow A\left(x\right)\ne0;\forall x\)

Vậy ...

c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)

Vậy: x=-1 là nghiệm của P(x)

\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)

=>x=-1 không là nghiệm của Q(x)