Find the minimum of M = x2 - 4x - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này không khó cách làm thế này:
x2+y2+2x+2y+2xy+5 = (x2 + y2 +1 +2x + 2y+ 2xy)+4
= (x + y +1 )2 +4
Ta có ( x + y +1)2 >= 0 \(\Rightarrow\) ( x +y +1)2 +4 >= 4
Dấu "=" xảy ra khi và chỉ khi x=y=-0,5
Vậy Min(x+y+1)2 = 4 khi và chỉ khi x=y=-0,5.
Xong rồi đó. Có gì sai sót các bạn góp ý nhé.
We have: \(A=x^2-3x=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
\(\Rightarrow A_{min}=-\frac{9}{4}\) at \(x=\frac{3}{2}\)
A=(x+y+1)(x+y+1)+4
A=(x+y+1)2+4
Vậy MinA=4 khi.......... của @Nguyễn Huy Thắng đó mà ghi tiếp
ngu Anh nhưng ko sao dịch dc chữ Find the minimum = tìm GTNN :)
BCNN (9;6;7) =126
9 * 14 =126
6 * 21 = 126
7 * 18 = 126
14 * 21 * 18 = 5292
Answer: 5292.
Ta có M = x2 - 4x - 2
= x2 - 2x - 2x + 4 - 6
= x(x - 2) - 2(x - 2) - 6
= (x- 2)2 - 6 \(\ge\)- 6
Dấu "=" xảy ra <=> (x - 2) = 0
=> x = 2
Answer:
\(M=x^2-4x-2\)
\(M=x^2-4x+4-6\)
\(M=\left(x-2\right)^2-6\)
Because \(\left(x-2\right)^2\ge0\forall x\)
so \(\left(x-2\right)^2-6\ge-6\)
or \(M\ge-6\)
Equal sign occors \(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
The minimum of M is \(-6\)\(\Leftrightarrow x=2\)