Tìm các số nguyên x, y biết: \(\frac{x+1}{2}\)- \(\frac{3}{5}\)= \(\frac{1}{2y}\)( với y khác 0 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5.3}{3x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5.3}{3x}=\frac{1}{6}+\frac{y}{3}=\frac{1}{6}+\frac{2y}{6}\)
\(\Leftrightarrow\frac{15}{3x}=\frac{1+2y}{6}\)
\(\Rightarrow\hept{\begin{cases}15=1+2y\\3x=6\end{cases}\Rightarrow\hept{\begin{cases}15=1+2y\\x=2\end{cases}}}\)
Thế x = 2 vào,ta có:
\(\frac{15}{3.2}=\frac{15}{6}=\frac{1.2y}{6}\)
\(\Leftrightarrow\frac{15}{6}=\frac{2y}{6}\Rightarrow y=15:2=7,5=8\)
2/x + y/4 = 1/8
=> 2/x = 1/8 - y/4
=> 2/x = 1-2y/8
=> x(1 - 2y) = 16
x | -1 | 1 | -2 | 2 | -4 | 4 | -16 | 16 | 8 | -8 |
1-2y | -16 | 16 | -8 | 8 | -4 | 4 | -1 | 1 | 2 | -2 |
y | loại | loại | loại | loại | loại | loại | 1 | 0 | loại | loại |
a) Ta có: \(\left(x-1\right)^2\ge\)0 \(\forall\)x
\(\left|y+2\right|\ge0\)\(\forall\) y
=> \(\left(x-1\right)^2+\left|y+2\right|\ge0\)\(\forall\)x,y
=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\y+2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy ...
b) Ta có: \(\frac{1}{2}-\frac{y}{3}=\frac{2}{x}\)
=> \(\frac{3-2y}{6}=\frac{2}{x}\)
=> \(x\left(3-2y\right)=12\)
=> x; 3 - 2y \(\in\)Ư(12) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12}
Do 3 - 2y là số lẽ , mà x,y \(\in\)Z
=> 3 - 2y \(\in\) {1; -1; 3; -3}
Lập bảng :
3 - 2y | 1 | -1 | 3 | -3 |
x | 12 | -12 | 4 | -4 |
y | 1 | 2 | 0 | 3 |
Vậy ...
a) \(x^3-5x^2+8x-4\)
\(=x^3-2x^2-3x^2+6x+2x-4\)
\(=x^2\left(x-2\right)-3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-3x+2\right)\)
\(=\left(x-2\right)\left(x^2-x-2x+2\right)\)
\(=\left(x-2\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)
\(=\left(x-2\right)\left(x-1\right)\left(x-2\right)\)
b) \(A=10x^2-15x+8x-12+7\)
\(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\)
\(A=\left(2x-3\right)\left(5x+4\right)+7\)
Dễ thấy \(\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)=B\)
Vậy để \(A⋮B\)thì \(7⋮\left(2x-3\right)\)
\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{2;1;5;-2\right\}\)
Vậy.......
\(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)
\(\Rightarrow\frac{5x+5}{10}-\frac{6}{10}=\frac{1}{2y}\)
\(\Rightarrow\frac{5x-1}{10}=\frac{1}{2y}\)
\(\Leftrightarrow\left(5x-1\right)2y=10\)
Lập bảng xong xét các trường hợp là ra
Ta có : \(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)
=> \(\frac{x+1}{2}-\frac{1}{2y}=\frac{3}{5}\)
=> \(\frac{xy+y-1}{2y}=\frac{3}{5}\)
=> 5(xy + y - 1) = 6y
=> 5xy + 5y - 5 = 6y
=> 5xy + 5y - 6y = 5
=> 5xy - y = 5
=> y(5x - 1) = 5
Vì x ; y là số nguyên
=> Ta có 5 = 1.5 = (-1).(-5)
Lập bảng xét các trường hợp
Vậy y = - 5 ; x = 0