K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

b) Đk: \(0\le x\le4\)

Ta có: \(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\)

<=> \(\left(\sqrt{4x+x^2}+\sqrt{4x-x^2}\right)^2=\left(4x+1\right)^2\)

<=> \(\left|4x+x^2\right|+\left|4x-x^2\right|+2\sqrt{\left(4x+x^2\right)\left(4x-x^2\right)}=16x^2+8x+1\)

<=> \(x^2+4x+4x-x^2+2x\sqrt{\left(4-x\right)\left(4+x\right)}=16x^2+8x+1\)

<=> \(2x\sqrt{16-x^2}=16x^2+8x+1-8x\)

<=> \(\left(2x\sqrt{16-x^2}\right)^2=\left(16x^2+1\right)^2\)

<=> \(4x^2\left|16-x^2\right|=256x^4+32x^2+1\)

<=> \(64x^2-4x^4=256x^4+32x^2+1\)

<=> \(260x^4-32x^2+1=0\)

Đặt x2 = k (k > 0) <=> 260k2 - 32k + 1 = 0

Ta có: \(\Delta=32^2-4.260=-16< 0\)

=> pt vô nghiệm

14 tháng 8 2020

\(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\) đk: \(0\le x\le4\)

\(\Leftrightarrow4x+x^2+4x-x^2+2\sqrt{16x^2-x^4}=16x^2+8x+1\)

\(2\sqrt{16x^2-x^4}=16x^2+1\)

\(\Leftrightarrow64x^2-4x^4=256x^4+32x^2+1\)

\(\Leftrightarrow260x^2-32x^2+1=0\)

=> Vo nghiem

14 tháng 10 2021

\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy pt vô nghiệm

\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)

\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

14 tháng 10 2021

a) \(\sqrt{x-5}=\sqrt{3-x}\)

\(\left(\sqrt{x-5}\right)^2=\left(\sqrt{3-x}\right)^2\)

\(x-5=3-x\)

\(x=4\)

b) \(\sqrt{4-5x}=\sqrt{2-5x}\)

\(\left(\sqrt{4-5x}\right)^2=\left(\sqrt{2-5x}\right)^2\)

\(4-5x=2-5x\)

\(2=0\) (Vô lí)

30 tháng 1 2021

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{7+x^3}-2\right)-\left(\sqrt{3+x^2}-2\right)}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^3-1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x^2-1}{\sqrt{3+x^2}+2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^2+x+1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x+1}{\sqrt{3+x^2}+2}}{1}=\dfrac{3}{12}-\dfrac{2}{4}=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}\).

24 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

22 tháng 7 2018

\(b.\sqrt[3]{x-17}+\sqrt{x+8}=5\) \(\left(ĐK:x\ge-8\right)\)

Đặt: \(a=\sqrt[3]{x-17},b=\sqrt{x+8}\)

\(\Rightarrow x-17=a^3,x+8=b^2\)

Khi đó:

\(\left\{{}\begin{matrix}a+b=5\\a^3-b^2=x-17-x-8=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\a^3-b^2=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(5-b\right)^3-b^2=-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-14b^2+75b-150=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-5b^2-9b^2+45b+30b-150=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^2\left(b-5\right)-9b\left(b-5\right)+30\left(b-5\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(b-5\right)\left(b^2-9b+30\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left[{}\begin{matrix}b=5\\b^2-9b+30=\left(b-\dfrac{9}{2}\right)^2+\dfrac{39}{4}=0\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)

Thế vào ta được:

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt[3]{x-17}=0\\\sqrt{x+8}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-17=0\\x+8=25\end{matrix}\right.\) \(\Leftrightarrow x=17\left(n\right)\)

22 tháng 7 2018

Câu (a)

Huhu hack não quá đuy :v không biết làm đúng or sai nữa :v dù sao cũng là 20p của mừn đóCăn bậc hai. Căn bậc ba

7 tháng 2 2021

a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)

 PT <=> 2x - 1 = 5

<=> x = 3 ( TM )

Vậy ...

b, ĐKXĐ : \(x\ge5\)

PT <=> x - 5 = 9

<=> x = 14 ( TM )

Vậy ...

c, PT <=> \(\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy ...

d, PT<=> \(\left|x-3\right|=3-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)

Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)

e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)

PT <=> 2x + 5 = 1 - x

<=> 3x = -4

<=> \(x=-\dfrac{4}{3}\left(TM\right)\)

Vậy ...

f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)

PT <=> \(x^2-x=3-x\)

\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )

Vậy ...

 

 

7 tháng 2 2021

a) \(\sqrt{2x-1}=\sqrt{5}\)          (x \(\ge\dfrac{1}{2}\))

<=> 2x - 1 = 5

<=> x = 3 (tmđk)

Vậy S = \(\left\{3\right\}\)

b) \(\sqrt{x-5}=3\)           (x\(\ge5\))

<=> x - 5 = 9

<=> x = 4 (ko tmđk)

Vậy x \(\in\varnothing\)

c) \(\sqrt{4x^2+4x+1}=6\)          (x \(\in R\))

<=> \(\sqrt{\left(2x+1\right)^2}=6\)

<=> |2x + 1| = 6

<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)

Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)

 

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

26 tháng 9 2023

a) \(4\sqrt{2x+1}-\sqrt{8x+4}+\dfrac{1}{2}\sqrt{32x+16}=12\) (ĐK: \(x\ge-\dfrac{1}{2}\)

\(\Leftrightarrow4\sqrt{2x+1}-\sqrt{4\left(2x+1\right)}+\dfrac{1}{2}\cdot4\sqrt{2x+1}=12\)

\(\Leftrightarrow4\sqrt{2x+1}-2\sqrt{2x+1}+2\sqrt{2x+1}=12\)

\(\Leftrightarrow4\sqrt{2x+1}=12\)

\(\Leftrightarrow\sqrt{2x+1}=\dfrac{12}{4}\)

\(\Leftrightarrow2x+1=3^2\)

\(\Leftrightarrow2x=9-1\)

\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=\dfrac{8}{2}\)

\(\Leftrightarrow x=4\left(tm\right)\)

b) \(\sqrt{4x^2-4x+1}=5\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)

\(\Leftrightarrow\left|2x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=5\left(x\ge\dfrac{1}{2}\right)\\2x-1=-5\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{2}\\x=-\dfrac{4}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

c) \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}=-\dfrac{1}{2}\)(ĐK: \(x\ge0;x\ne1\))

\(\Leftrightarrow-\left(\sqrt{x}-1\right)=2\left(2\sqrt{x}-3\right)\)

\(\Leftrightarrow-\sqrt{x}+1=4\sqrt{x}-6\)

\(\Leftrightarrow4\sqrt{x}+\sqrt{x}=1+6\)

\(\Leftrightarrow5\sqrt{x}=7\)

\(\Leftrightarrow\sqrt{x}=\dfrac{7}{5}\)

\(\Leftrightarrow x=\dfrac{49}{25}\left(tm\right)\)

a:

ĐKXĐ: \(x>=-2\)

\(1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)

=>\(1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)

 

Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)(ĐK: a>0 và b>0)

Phương trình sẽ trở thành:

1+ab=a+b

=>ab-a-b+1=0

=>a(b-1)-(b-1)=0

=>(b-1)(a-1)=0

=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)

=>\(\left\{{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\)

=>\(x\in\varnothing\)

b: \(\sqrt{4x^2-2x+\dfrac{1}{4}}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x-\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\left|2x-\dfrac{1}{2}\right|=4x^3-x^2+8x-2\)(1)

TH1: x>=1/4

\(\left(1\right)\Leftrightarrow4x^3-x^2+8x-2=2x-\dfrac{1}{2}\)

=>\(4x^3-x^2+6x-\dfrac{3}{2}=0\)

=>\(x^2\left(4x-1\right)+1,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\left(x^2+1,5\right)=0\)

=>4x-1=0

=>x=1/4(nhận)

TH2: x<1/4

Phương trình (1) sẽ trở thành:

\(4x^3-x^2+8x-2=-2x+\dfrac{1}{2}\)

=>\(x^2\left(4x-1\right)+2\left(4x-1\right)+0,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\cdot\left(x^2+2,5\right)=0\)

=>4x-1=0

=>x=1/4(loại)