Làm giúp em với ạ
Phân tích đa thức thành nhân tử bằng cách đặt ẩn phụ
a) (x2+x)2+3(x2+x)+2
b) (x2+x)2-2(x2+x)-15
c) (x2+x+1)(x2+x+2)-12
d) (x2+x)2+4x2+4x-12
e) (x2+2x)2+9x2+18x+20
Cố làm hết giúp em
Em cảm ơn nhiều ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\left(x^2+x\right)2+3\left(x^2+x\right)+2\)
=\(\left(x^2+x\right)6+2\)
b,\(\left(x^2+x\right)2-2\left(x^2+x\right)-15\)
=\(-4\left(x^2+x\right)-15\)
c,\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
=\(\left(x^2+x+1\right)\left(x^2+x+1\right)+1-12\)
=\(\left(x^2+x+1\right)^2-11\)
d,\(\left(x^2+x\right)2+4x^2+4x-12\)
=\(x\left(x+1\right)2+2x\left(x+1\right)-12\)
=\(2x\left(x+1\right)+2x\left(x+1\right)-12\)
=\(\left(x+1\right)\left(2x+2x-12\right)\)
= \(\left(x+1\right)\left(4x-12\right)=4\left(x+1\right)\left(x-3\right)\)
e,\(\left(x^2+2x\right)2+9x^2+18x+20\)
=\(x\left(x+2\right)2+9x\left(x+2\right)+20\)
=\(2x\left(x+2\right)+9x\left(x+2\right)+20=\left(x+2\right)\left(2x+9x+20\right)\)
=\(\left(x+2\right)\left(11x+20\right)\)
a) \(x^2\left(x^2+4\right)-x^2-4=x^2\left(x^2+4\right)-\left(x^2+4\right)=\left(x^2+4\right)\left(x^2-1\right)=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)
b) \(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-4^2=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)+1-25=\left(x^2+7x+11\right)^2-5^2=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
a. \(x^2\left(x^2+4\right)-x^2-4\)
\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)
\(=\left(x^2-1\right)\left(x^2+4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+4\right)\)
b. \(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
c. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\) (*)
Đặt \(t=x^2+7x+10\), ta được
(*) \(=t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=\left(t-4\right)\left(t+6\right)\)
hay \(\left(x^2+7x+6\right)\left(x^2+7x+18\right)\)
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
a) \(=x^2+7x-12x-84-2x+14\)
\(=x^2-7x-70\)
b)\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
c) \(=9x\left(x+y\right)-\left(x+y\right)\)
\(=\left(9x-1\right)\left(x+y\right)\)
d)\(=\left(x-y\right)^2-9^2\)
\(=\left(x-y+9\right)\left(x-y-9\right)\)
e)\(=x^2+8x+16-60+15x\)
\(=x^2+23x-44\)
Bài 5:
a. 1 - 2y + y2
= (1 - y)2
b. (x + 1)2 - 25
= (x + 1)2 - 52
= (x + 1 - 5)(x + 1 + 5)
= (x - 4)(x + 6)
c. 1 - 4x2
= 12 - (2x)2
= (1 - 2x)(1 + 2x)
d. 8 - 27x3
= 23 - (3x)3
= (2 - 3x)(4 + 6x + 9x2)
e. (đề hơi khó hiểu ''x3'' !?)
g. x3 + 8y3
= (x + 2y)(x2 - 2xy + y2)
Chọn D.
x 4 + 8x = x( x 3 +8)= x( x 3 + 2 3 ) = x(x + 2)( x 2 − 2x + 4)
d)
$(x^2+x)^2+4x^2+4x-12$
$=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)$
$=(x^2+x+6)(x^2+x-2)=(x^2+x+6)(x+2)(x-1)$
e)
$(x^2+2x)^2+9x^2+18x+20$
$=(x^2+2x)^2+9(x^2+2x)+20$
$=(x^2+2x)^2+4(x^2+2x)+5(x^2+2x)+20$
$=(x^2+2x)(x^2+2x+4)+5(x^2+2x+4)$
$=(x^2+2x+4)(x^2+2x+5)$
a)
$(x^2+x)^2+3(x^2+x)+2$
$=(x^2+x)^2+(x^2+x)+2(x^2+x)+2$
$=(x^2+x)(x^2+x+1)+2(x^2+x+1)=(x^2+x+1)(x^2+x+2)$
b)
$(x^2+x)^2-2(x^2+x)-15$
$=(x^2+x)^2+3(x^2+x)-5(x^2+x)-15$
$=(x^2+x)(x^2+x+3)-5(x^2+x+3)$
$=(x^2+x+3)(x^2+x-5)$
c)
$(x^2+x+1)(x^2+x+2)-12=(x^2+x+1)^2+(x^2+x+1)-12$
$=(x^2+x+1)^2-3(x^2+x+1)+4(x^2+x+1)-12$
$=(x^2+x+1)(x^2+x+1-3)+4(x^2+x+1-3)$
$=(x^2+x+1-3)(x^2+x+1+4)=(x^2+x-2)(x^2+x+5)$
$=[x(x-1)+2(x-1)](x^2+x+5)=(x+2)(x-1)(x^2+x+5)$