K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\)  (dấu bằng xảy ra khi và chỉ khi x=y)

Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y

Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010

Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y

Nên: \(x=y=987\)

Max x+y=\(\sqrt{4\cdot987^2}=1974\)

Không viết đúng không

:v

1 tháng 7 2019

Mình xem đáp án là 1328 với lại mình gõ nhầm;

abcdef là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .

10 tháng 4 2018

120 km nha@  nhớ tk cho nha,điểm mainhf đang âm@  `_'

30 tháng 9 2023

loading...

Đáp án:

13520 hoặc 63504.

Giải thích các bước giải:

�����¯=2��¯.���¯⇒1000��¯+���¯=2��¯.���¯⇒1000��¯=−���¯+2��¯.���¯⇒1000��¯=(2��¯−1)���¯(∗)⇒1000��¯ ⋮ 2��¯−1

Do (��¯;2��¯−1)=1

⇒1000 ⋮ 2��¯−1

2��¯−1≥19(��¯ nhỏ nhất là 10)

Ước dương của 1000

Ư(1000)={1;2;4;5;8;10;20;25;40;50;100;125;200;250;500;1000}

Do 2��¯−1 lẻ và 2��¯−1≥19

⇒(2��¯−1)∈{25;125}⊛2��¯−1=25⇒2��¯=26⇒��¯=13(∗)⇒1000.13=(2.13−1)���¯⇒13000=25���¯⇒���¯=520⊛2��¯−1=125⇒2��¯=126⇒��¯=63(∗)⇒1000.63=(2.63−1)���¯⇒63000=125���¯⇒���¯=504

Vậy số thoả mãn là 13520 hoặc 

16 tháng 12 2023

\(A=\overline{a,65}+\overline{4,bc}\)

\(=a+0,65+4+0,1b+0,01c\)

\(=a+4,65+0,1b+0,01c\)

\(B=\overline{a,b}+3,5+\overline{1,2c}\)

\(=a+0,1b+3,5+1,2+0,01c\)

\(=a+4,7+0,1b+0,01c\)

Ta có: A=a+4,65+0,16+0,01c

B=a+4,7+0,1b+0,01c

mà 4,65<4,7

nên A<B

ABDC là hình bình hành

=>\(\overrightarrow{AB}=\overrightarrow{CD};\overrightarrow{AC}=\overrightarrow{BD}\)

A: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\ne\overrightarrow{CB}\)

=>Loại

B: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}\)

\(=\overrightarrow{BA}+\overrightarrow{CB}+\overrightarrow{DC}\)

\(=\overrightarrow{CA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\)<>vecto BC

C: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{AD}\)

=>Loại

D: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{CA}\)

=>Loại

Do đó: Không có đáp án nào đúng