Viết các đa thức sau dưới dạng lập phương của một tổng và một hiệu
a) A = 8x3 + 12x2y + 6xy2 + y3
b) B = x3 - 3x2 + 3x - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
8 x 3 – 12 x 2 y + 6 x y 2 – y 3 = ( 2 x ) 3 – 3 . ( 2 x ) 2 y + 3 . 2 x . y 2 – y 3 = ( 2 x – y ) 3
Đáp án cần chọn là: A
a: =(x-1)^3
b: =(-2x+1)^3
c: =x^3-3x^2y+3xy^2-y^3
=(x-y)^3
\(a,x^3+6x^2y+12xy^2+8y^3\\ =x^3+3.2x^2+3.2^2.x+\left(2y\right)^3\\ =\left(x+2y\right)^3\)
\(b,x^3-3x^2+3x-1\\ =x^3-3x^2.1+3x.1^2-1^3\\ =\left(x-1\right)^3\)
a) \(x^3+6x^2y+12xy^2+8y^3\)
\(=x^3+3\cdot x^2\cdot2y+2\cdot x\cdot\left(2y\right)^2+\left(2y\right)^3\)
\(=\left(x+2y\right)^3\)
b) \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
a) Áp dụng HĐT 5 thu được ( 2 a - 3 b ) 3 .
b) Ta có 8 x 3 + 12 x 2 y + 6 xy 2 + y 3 = ( 2 x + y ) 3 .
Áp dụng HĐT 7 với A = 2x + y; B = z
( 2 x + y ) 3 - z 3 = (2x + y - z)(4 x 2 + y 2 + z 2 + 4xy + 2xz + zy).
–x3 + 3x2 – 3x + 1
= (–x)3 + 3.(–x)2.1 + 3.(–x).1 + 13
= (–x + 1)3 (Áp dụng HĐT (4) với A = –x và B = 1)
\(8x^3+12x^2y+6xy^2+y^3-z^3\)
\(=\left(2x+y\right)^3-z^3\)
\(=\left(2x+y-z\right)\left[4x^2+z\left(2x+y\right)+z^2\right]\)
a, 8a3 - 36a2 +54ab2 - 27b3
=(8a3-36a2b +54ab2 - 27b3)
=(2a-3b)2
=(2a-3b)(2a-3b)(2a-3b)
b, 8x3 + 12x2y + 6xy2 + y3 - z 3
=(8x3 + 12x2y + 6xy2 + y3) - z3
=(2x + y)3 - y3
=(2x + y +z) . [ (2x + Y)2 + 2(2x + y)+ z2
= (2x + y + z)(4x2 + 4xy + y2 + 4x + 2y + z2
\(-8x^3+12x^2y-6xy^2+y^3=\left(-2x\right)^3+3.\left(-2x\right)^3y+3.\left(-2x\right).y^2+y^3\)
\(=\left(-2x+y\right)^3\) (hay \(\left(y-2x\right)^3\) tùy cách ghi)
Ta có: \(-8x^3+12x^2y-6xy^2+y^3\)
\(=-\left(8x^3-12x^2y+6xy^2-y^3\right)\)
\(=-\left(2x-y\right)^3\)
Ta có x 3 + 3 x 2 + 3 x + 1 = x 3 + 3 x 2 . 1 + 3 x . 1 2 + 1 3 = ( x + 1 ) 3 .
Ta có
8 x 3 + 12 x 2 y + 6 x y 2 + y 3 = ( 2 x ) 3 + 3 . ( 2 x ) 2 y + 3 . 2 x . y 2 + y 3 = ( 2 x + y ) 3
Đáp án cần chọn là: B
a)
A = \(\left(2x\right)^3+3.\left(2x\right)^2.y+3.\left(2x\right).y+y^3\)
= \(\left(2x+y\right)^3\)
b)
\(B=x^3-3.x^2.1+3.x.1-1^3\)
= \(\left(x-1\right)^3\)