K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2020

Đề này chưa logic rồi bạn ơi. 

1 + 2x + 3x^2 +.... + (n +1) x^n chứ ạ???

29 tháng 9 2020

Nếu đề là: \(\left(1+2x+3x^2+...+\left(n+1\right)x^n\right)^{10}=a_0+a_1x+...+a_{20}x^{20}\)

VT có bậc cao nhất là 10n 

VP có bậc cao nhất là 20 

=> Đồng nhất hệ số bậc cao nhất => 10n = 20 => n = 2 

=> Ta có: \(\left(1+2x+3x^2\right)^{10}=M.C_{10}^k\left(2x+3x^2\right)^k=M.C_{10}^k.N.C_k^i.\left(2x\right)^{k-i}.\left(3x^2\right)^i\)

\(=M.N.C^k_{10}.C^i_k.2^{k-i}.3^i.x^{k+i}\)

Với M là tổng xích ma từ k = 1 đến 10 và N là tổng xích ma từ i = 1 đến k chỉ là áp dụng nhị thứ Newton thôi nhé. 

=> Để có a4 => Cần tìm hệ số của x4 => k + i = 4 với \(i\le k\)

Chọn i = 0 => k = 4 => \(C^4_{10}.C^0_4.2^{4-0}.3^0.x^4=3360x^4\)

Chọn i = 1 => k = 3 => \(C^3_{10}.C^1_4.2^{3-1}.3^1.x^{3+1}=5760x^4\)

Chọn i = 2 => k = 2 => \(C^2_{10}.C^2_4.2^{2-2}.3^2.x^4=2430x^4\)

=> \(a_4=3360+5760+2430\)

NV
29 tháng 9 2020

a. Cho \(x=1\) ta được:

\(\left(1+1+2\right)^{10}=a_0+a_1+a_2+...+a_{20}\)

\(\Rightarrow S_1=4^{10}\)

b. Cho \(x=2\) ta được:

\(\left(1+2+8\right)^{10}=a_0+a_1.2+a_2.2^2+...+a_{20}.2^{20}\)

\(\Rightarrow S_2=11^{10}\)

c.

\(\left(1+x+2x^2\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(x+2x^2\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i.2^ix^{i+k}\)

Số hạng chứa \(\Rightarrow\left\{{}\begin{matrix}i+k=17\\0\le i\le k\le10\end{matrix}\right.\)

\(\Rightarrow\left(i;k\right)=\left(7;10\right);\left(8;9\right)\)

\(\Rightarrow a_{17}=C_{10}^{10}C_{10}^7.2^7+C_{10}^9.C_9^8.2^8=...\)

18 tháng 12 2016

3-2+1+2-1+1=4 -> tổng trên = 4^5=1024

15 tháng 1 2017

\(a_1+a_3+...+a_{39}=???\)

15 tháng 1 2017

Ta có: \(\left(3x^8-2x^6+x^5+2x-x^2+1\right)^5=a_0+a_1x+...+a_{40}x^{40}\)

Từ khai triển này ta thay x = 1 vào thì được

\(a_0+a_1+...+a_{40}=\left(3-2+1+2-1+1\right)^5=4^5=1024\)

10 tháng 9 2023

Để tính giá trị của biểu thức S, chúng ta có thể sử dụng công thức khai triển nhị thức Newton. Công thức này cho phép chúng ta tính toán các hệ số a0, a1, a2,..., a11 trong biểu thức (1+x+x^2+...+x^10)^11.

Công thức khai triển nhị thức Newton: (a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)b^1 + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a^1b^(n-1) + C(n,n)a^0b^n

Trong đó, C(n,k) là tổ hợp chập k của n (n choose k), được tính bằng công thức C(n,k) = n! / (k!*(n-k)!).

Áp dụng công thức khai triển nhị thức Newton vào biểu thức (1+x+x^2+...+x^10)^11, ta có:

S = C(11,0)*a0 - C(11,1)*a1 + C(11,2)*a2 - C(11,3)*a3 + ... + C(11,10)*a10 - C(11,11)*a11

Bây giờ, để tính giá trị của S, chúng ta cần tính các hệ số a0, a1, a2,..., a11. Để làm điều này, chúng ta có thể sử dụng công thức C(n,k) để tính các hệ số từng phần tử trong biểu thức (1+x+x^2+...+x^10)^11.

Tuy nhiên, để viết bài giải ngắn nhất có thể, ta có thể sử dụng một số tính chất của tổ hợp chập để rút gọn công thức. Chẳng hạn, ta có các quy tắc sau:

C(n,k) = C(n,n-k) (đối xứng)C(n,0) = C(n,n) = 1C(n,1) = C(n,n-1) = n

Áp dụng các quy tắc trên vào công thức của S, ta có:

S = a0 - 11a1 + 55a2 - 165a3 + ... + 330a10 - a11

Với công thức trên, ta chỉ cần tính 11 hệ số a0, a1, a2,..., a10, a11 và thực hiện các phép tính nhân và cộng trừ để tính giá trị của S.

NV
4 tháng 1 2021

\(S_0=a_0+a_1+...+a_{16}=f\left(1\right)=1\)

Số hạng tổng quát trong khai triển:

\(\sum\limits^8_{k=0}C_8^k\left(x^2+2x\right)^k\left(-2\right)^{8-k}=\sum\limits^8_{k=0}C_8^k\left(-2\right)^{8-k}\sum\limits^k_{i=0}C_k^ix^{2i}\left(2x\right)^{k-i}\)

\(=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-2\right)^{8-k}2^{k-i}x^{i+k}\)

Số hạng không chứa x thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=0\end{matrix}\right.\)

\(\Rightarrow i=k=0\Rightarrow a_0=C_8^0C_0^0\left(-2\right)^82^0=2^8\)

Số hạng chứa \(x^{16}\) thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=16\end{matrix}\right.\)

\(\Rightarrow i=k=8\Rightarrow a_{16}=C_8^8C_8^8\left(-2\right)^0.2^0=1\)

\(\Rightarrow S=S_0-\left(a_0+a_{16}\right)=-2^8\)