K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2020

Đề này chưa logic rồi bạn ơi. 

1 + 2x + 3x^2 +.... + (n +1) x^n chứ ạ???

29 tháng 9 2020

Nếu đề là: \(\left(1+2x+3x^2+...+\left(n+1\right)x^n\right)^{10}=a_0+a_1x+...+a_{20}x^{20}\)

VT có bậc cao nhất là 10n 

VP có bậc cao nhất là 20 

=> Đồng nhất hệ số bậc cao nhất => 10n = 20 => n = 2 

=> Ta có: \(\left(1+2x+3x^2\right)^{10}=M.C_{10}^k\left(2x+3x^2\right)^k=M.C_{10}^k.N.C_k^i.\left(2x\right)^{k-i}.\left(3x^2\right)^i\)

\(=M.N.C^k_{10}.C^i_k.2^{k-i}.3^i.x^{k+i}\)

Với M là tổng xích ma từ k = 1 đến 10 và N là tổng xích ma từ i = 1 đến k chỉ là áp dụng nhị thứ Newton thôi nhé. 

=> Để có a4 => Cần tìm hệ số của x4 => k + i = 4 với \(i\le k\)

Chọn i = 0 => k = 4 => \(C^4_{10}.C^0_4.2^{4-0}.3^0.x^4=3360x^4\)

Chọn i = 1 => k = 3 => \(C^3_{10}.C^1_4.2^{3-1}.3^1.x^{3+1}=5760x^4\)

Chọn i = 2 => k = 2 => \(C^2_{10}.C^2_4.2^{2-2}.3^2.x^4=2430x^4\)

=> \(a_4=3360+5760+2430\)

NV
13 tháng 1

- Nếu \(a_i=0\) ; \(\forall i\in\left(0;n-1\right)\Rightarrow a_nx^n=0\Rightarrow\alpha=0< 1\) thỏa mãn

- Nếu tồn tại \(a_i\ne0\), đặt \(max\left|\dfrac{a_i}{a_n}\right|=A>0\)

Do \(\alpha\) là nghiệm nên:

\(a_n\alpha^n+a_{n-1}\alpha^{n-1}+...+a_1\alpha+a_0=0\)

\(\Leftrightarrow\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}=-\alpha^n\)

\(\Leftrightarrow\left|\alpha^n\right|=\left|\dfrac{a_0}{a_n}+\dfrac{a_1}{a_n}\alpha+...+\dfrac{a_{n-1}}{a_n}\alpha^{n-1}\right|\)

\(\Rightarrow\left|\alpha^n\right|\le\left|\dfrac{a_0}{a_n}\right|+\left|\dfrac{a_1}{a_n}\right|.\left|\alpha\right|+...+\left|\dfrac{a_{n-1}}{a_n}\right|.\left|\alpha^{n-1}\right|\le A+A.\left|\alpha\right|+...+A.\left|\alpha^{n-1}\right|\)

\(\Rightarrow\left|\alpha^n\right|\le A\left(1+\left|\alpha\right|+\left|\alpha^2\right|+...+\left|\alpha^{n-1}\right|\right)\)

\(\Rightarrow\left|\alpha^n\right|\le A.\dfrac{\left|\alpha^n\right|-1}{\left|\alpha\right|-1}\)

TH1: Nếu \(\left|\alpha\right|\le1\) hiển nhiên ta có \(\left|\alpha\right|< 1+A\) (đpcm)

TH2: Nếu \(\left|\alpha\right|>1\)

\(\Rightarrow\left|\alpha^n\right|\le\dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}-\dfrac{A}{\left|\alpha\right|-1}< \dfrac{A.\left|\alpha^n\right|}{\left|\alpha\right|-1}\)

\(\Leftrightarrow\left|\alpha\right|-1< A\Rightarrow\left|\alpha\right|< 1+A\) (đpcm)

23 tháng 4 2023

1D; 2B; 3D

NV
16 tháng 1

Tổng các hệ số trong khai triển là:

\(a_0+a_1+...+a_n=\left(1+2.1\right)^{2023}=3^{2023}\)

17 tháng 9 2023

\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)

Giải phương trình sau :

 \(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)

\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)

\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)

Giải bất phương trình sau :

\(3< n\left(n+1\right)< 31\)

\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)

\(\Rightarrow A\cap B=\left\{2\right\}\)

30 tháng 8 2019

Câu 1 : Ta có :\(x^4+2x^3+2x^2+x+6\)

\(=x^4+2x^3+x^2+x^2+x+6\)

\(=x^2\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\)

\(VT>0\) nên phương trình vô nghiệm .

Câu 2 : Ta có :

\(\left\{{}\begin{matrix}\Delta_1=a_1^2-4b_1\\\Delta_2=a_2^2-4b_2\end{matrix}\right.\Rightarrow\Delta_1+\Delta_2=a_1^2+a_2^2-4\left(b_1+b_2\right)\)

Mà : \(a_1^2+a_2^2\ge4\left(b_1+b_2\right)\Leftrightarrow\Delta_1+\Delta_2\ge0\)

Nên hai phương trình luôn có nghiệm

30 tháng 8 2019

Nếu đổi +6 thành -6 thì sao vậy , bạn giúp mình với :(((
Pt1 ấy : \(x^4+2x^3+2x^2+x-6=0\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a)

+) Ta có: \({\left( {1 - \frac{1}{2}x} \right)^5} = 1 - \frac{5}{2}x + \frac{5}{2}{x^2} - \frac{5}{4}{x^3} + \frac{5}{{16}}{x^4} - \frac{1}{{32}}{x^5}\)

+) Đồng nhất hệ số với khai triển ở đề bài ta thấy: \({a_3} = \frac{{ - 5}}{4}\)

b)

+) Thay \(x = 1\) vào biểu thức khai triển ở đề bài, ta có: \({\left( {1 - \frac{1}{2}.1} \right)^5} = {a_0} + {a_1} + {a_2} + {a_3} + {a_4} + {a_5}\)

+) Vậy tổng :\({a_0} + {a_1} + {a_2} + {a_3} + {a_4} + {a_5} = {\left( {\frac{1}{2}} \right)^5} = \frac{1}{{32}}\)