K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

Ta có: \(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)

\(=\left|x-1\right|+\left|x+2\right|\)

\(=\left|1-x\right|+\left|x+2\right|\ge\left|1-x+x+2\right|=\left|3\right|=3\)

Dấu "=" xảy ra khi: \(\left(1-x\right)\left(x+2\right)\ge0\)

\(\Rightarrow-2\le x\le1\)

Vậy \(-2\le x\le1\)

8 tháng 10 2020

\(\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)

\(\Leftrightarrow\left|x-1\right|+\left|x+2\right|=3\)(1)

Xét \(\left|x-1\right|+\left|x+2\right|\)

\(=\left|-\left(x-1\right)\right|+\left|x+2\right|\)

\(=\left|1-x\right|+\left|x+2\right|\)

\(\ge\left|1-x+x+2\right|=\left|3\right|=3\)( BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\))

Dấu "=" xảy ra ( tức (1) ) khi ab ≥ 0

=> \(\left(1-x\right)\left(x+2\right)\ge0\)

=> \(-2\le x\le1\)

Vậy \(-2\le x\le1\)là nghiệm của pt

24 tháng 7 2017

\(\sqrt{2x+4}-(\frac{3\sqrt{2}-2\sqrt{3}}{2}x+2\sqrt 3-\sqrt 3)\)

\(-2\sqrt{2-x}-(\sqrt{3}x-2\sqrt{3})\)

\(\frac{6x-4}{\sqrt{x^2+4}}-(\frac{3}{\sqrt{2}}x-\sqrt{2})\)

cho ai muốn xài liên hợp

17 tháng 9 2019

\(x=1\)

a: Đặt \(x^2-4=a\)

Pt sẽ là \(a=3\sqrt{xa}\)

\(\Rightarrow a^2=9xa\)

\(\Leftrightarrow a\left(a-9x\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-9x\right)=0\)

hay \(x\in\left\{2;-2;\dfrac{9+\sqrt{97}}{2};\dfrac{9-\sqrt{97}}{2}\right\}\)

d: Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x^2+x+1}=b\)

Pt sẽ là 2a+b=ab+2

=>(b-2)(1-a)=0

=>b=2 và 1-a

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+1=4\\x^2-x+1=1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

27 tháng 9 2023

ĐKXĐ \(3x^2-5x+1\ge0;x^2-2\ge0;x^2-x-1\ge0\)

Ta có : \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3.\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\sqrt{3x^2-5x+1}-\sqrt{3\left(x^2-x-1\right)}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\dfrac{3x^2-5x+1-3.\left(x^2-x-1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)

\(\Leftrightarrow\dfrac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}+\dfrac{2}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=0\left(∗\right)\end{matrix}\right.\)

Xét phương trình (*) ta có VT > 0 \(\forall x\) mà VP = 0

nên (*) vô nghiệm

Vậy x = 2 là nghiệm phương trình 

6 tháng 2 2017

1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~

\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)

6 tháng 2 2017

Mấy bài kia sao cái phương trình dài thê,s giải sao nổi

16 tháng 9 2015

ĐK: x2 - 1 \(\ge\) 0

Bình phương 2 vế ta được: \(\left(x^2+3\sqrt{x^2-1}\right)^2=\left(\sqrt{x^4-x^2+1}\right)^2\)

<=> \(x^4+6x^2\sqrt{x^2-1}+9\left(x^2-1\right)=x^4-x^2+1\)

<=> \(6x^2\sqrt{x^2-1}+10x^2-10=0\)

<=> \(3x^2\sqrt{x^2-1}+5\left(x^2-1\right)=0\)

<=> \(\sqrt{x^2-1}.\left(3x^2+5\sqrt{x^2-1}\right)=0\)

<=> \(\sqrt{x^2-1}=0\) hoặc \(3x^2+5\sqrt{x^2-1}=0\)

+) \(\sqrt{x^2-1}=0\) => x2 - 1 = 0 <=> x = 1 hoặc x = -1

+) \(3x^2+5\sqrt{x^2-1}=0\) <=> \(x^2=\sqrt{x^2-1}=0\) => Vô nghiệm

Vậy...

16 tháng 9 2015

"anh vô anh ơis"là sao bn  Vương Thúy Kiều!!!!!!!!!!

8 tháng 7 2017

a)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)

\(\Leftrightarrow\left(\sqrt{x^2-2x+1}-3\right)-\left(\sqrt{x^2-4x+4}-2\right)=x-3-1\)

\(\Leftrightarrow\frac{x^2-2x+1-9}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x+4-4}{\sqrt{x^2-4x+4}+2}=x-4\)

\(\Leftrightarrow\frac{x^2-2x-8}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-4\right)}{\sqrt{x^2-2x+1}+3}-\frac{x\left(x-4\right)}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1\right)=0\)
Dễ thấy: \(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1< 0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

b)\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)

\(\Leftrightarrow\left(\sqrt{x^2-6x+9}-\frac{7}{2}\right)-\left(\sqrt{x^2+6x+9}-\frac{5}{2}\right)=0\)

\(\Leftrightarrow\frac{x^2-6x+9-\frac{49}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{x^2+6x+9-\frac{25}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\frac{\frac{4x^2-24x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{4x^2+24x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\frac{\frac{\left(2x-13\right)\left(2x+1\right)}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{\left(2x+1\right)\left(2x+11\right)}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}\right)=0\)

Dễ thấy: \(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}< 0\)

\(\Rightarrow2x+1=0\Rightarrow x=-\frac{1}{2}\)

c)Áp dụng BĐT CAuchy-Schwarz ta có:

\(P^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)

\(\le\left(1+1\right)\left(x-2+4-x\right)\)

\(=2\cdot\left(x-2+4-x\right)=2\cdot2=4\)

\(\Rightarrow P^2\le4\Rightarrow P\le2\)