1)TÌm x biết
(x-2)2 - (x-2).(x+2) = 0
2)Chứng minh biểu thức A = x2 - 2x + 2020 >0 với mọi giá trị x
Mình cần gấp lắm !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(M=0\)
mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)
nên x-2021=0 và 2021-y=0
=>x=2021 và y=2021
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
a ) Ta có : \(\frac{-1}{4x+2}< 0\)
Mà \(-1< 0\) nên \(4x+2< 0\)
\(\Leftrightarrow4x< -2\)
\(\Leftrightarrow x< \frac{-1}{2}\)
a)\(\frac{-1}{4x+2}< 0\)
\(\Leftrightarrow4x+2>0\)
\(\Leftrightarrow4x>-2\)
\(\Leftrightarrow x>\frac{-1}{2}\)
Vậy ...
b)\(\frac{-x^2-2x-3}{x^2+1}\)
Ta có: \(-x^2-2x-3=-\left(x+1\right)^2-2\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2-2\le-2< 0;\forall x\)
Lại có \(x^2\ge0;\forall x\)
\(\Rightarrow x^2+1\ge1>0;\forall x\)
\(\Rightarrow\frac{-x^2-2x-3}{x^2+1}< 0;\forall x\)
Bài 17.Cho phân thức: A=2x-1/x^2-x
a. Tìm điều kiện để giá trị của phân thức được xác định.
x^2 - x # 0
<=> x ( x - 1 ) # 0
<=> x # 0
<=> x -1 # 0 => x # 1
b. Tính giá trị của phân thức khi x = 0 và khi x = 3.
Nếu x = 0 thì phân thức ko xác định
Nếu x = 3 thì
2.3 - 1 / 3^2 - 3
= 5/6
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
Gấp thì được
1) \(\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-4\right)=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
2) \(A=x^2-2x+2020=\left(x^2-2x+1\right)+2019=\left(x-1\right)^2+2019\ge2019>0\)
Bài 1:
\(\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x-2\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-x-2\right)=0\)
\(\Leftrightarrow-4\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
Ta có: \(A=x^2-2x+2020=x^2-2x+1+2019=\left(x-1\right)^2+2019\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow\left(x-1\right)^2+2019\ge2019\forall x\)
hay \(A>0\)( đpcm )