Trong không gian, cho ba vectơ u → , v → , w → không đồng phẳng. Tìm x để ba vectơ a → = u → + 2 v → + 3 w → ; b → = - u → + v → + w → ; c → = x u → + v → - 2 w → đồng phẳng.
A. x = 10
B. x = -10
C. x = 5
D. x = -5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Em có: a → , b → = 13 ; − 16 ; 2
Ba vectơ a → , b → , c → đồng phẳng thì a → , b → . c → = 0
Muốn chứng tỏ rằng ba vecto u → , v → , w → đồng phẳng ta cần tìm hai số thực p và q sao cho w → = p u → + q v →
Giả sử có w → = p u → + q v →
2 c → – 3 a → = p( a → – 2 b → ) + q(3 b → − c → )
⇔ (3 + p) a → + (3q − 2p) b → − (q + 2) c → = 0 → (1)
Vì ba vecto lấy tùy ý a → , b → , c → nên đẳng thức (1) xảy ra khi và chỉ khi:
Như vậy ta có: w → = −3 u → − 2 v → nên ba vecto u → , v → , w → đồng phẳng.
Ba vectơ a → ; b → v à c → đồng phẳng nếu thỏa mãn một trong hai điều kiện sau:
- Giá của 3 vector đều cùng song song với mặt phẳng (P).
- 1 trong 3 vec tơ biểu diễn được qua hai vec tơ còn lại,
tức là tồn tại cặp số (m; n) duy nhất thỏa mãn
Rõ ràng a → và b → không cùng phương.
Ba vectơ a → , b → , c → đồng phẳng ⇔ ∃ cặp số ( m,n ) sao cho c → = m a → + n b →
Vì u → , v → , w → không đồng phẳng nên
x - m + n = 0 1 - 2 m - n = 0 - 2 - 3 m - n = 0 ⇔ x = - 10
Đáp án B