K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2022

câu a bị lx

16 tháng 5 2022

lên nhanh thế cj

 

21 tháng 1 2016

b. Ta co goc EMD + goc EMH =90 mà DEM = HEM nen EMD = EMH. Xet 2 tam giac DEM va HEM có EH canh chung, goc EMH =EMD, DEM=HEM

C. EF=EK suy ra tam giac EFK can tai E. EM la tia phan giác, cung là đường cao, ta lại có ED vuong góc voi EK. Suy ra M là trực tâm. Mà MH vuong goc EF. Suy ra KMH thang hang

 

 

 

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

\(\widehat{DEC}=\widehat{HEC}\)

Do đó; ΔEDC=ΔEHC

b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có 

CD=CH

\(\widehat{DCK}=\widehat{HCF}\)

Do đó; ΔDCK=ΔHCF

Suy ra: CK=CF

15 tháng 5 2022

a, Xét Δ DCE và Δ HCE, có :

EC là cạnh chung

\(\widehat{CDE}=\widehat{CHE}=90^o\)

\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))

=> Δ DCE = Δ HCE (g.c.g)

=> DC = HC

b, Xét Δ DCK và Δ HCF, có :

DC = HC (cmt)

\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)

=> Δ DCK = Δ HCF ( ch - cgn)

=> CK = CF

=> Δ CKF cân tại C

11 tháng 5 2022

a, Xét Δ DEF vuông tại D, có :

\(EF^2=ED^2+DF^2\) (định lí Py - ta - go)

=> \(EF=13\left(cm\right)\)

b, Xét Δ EDH và Δ ENH, có :

\(\widehat{EDH}=\widehat{ENH}=90^o\)

EH là cạnh chung

\(\widehat{DEH}=\widehat{NEH}\) (EH là tia phân giác \(\widehat{EDN}\))

=> Δ EDH = Δ ENH (g.c.g)

11 tháng 5 2022

a)Áp dụng định lí Pitago

DE2 + DF2 = EF2

hay 52 + 122 = EF2

25 + 144 = \(\sqrt{169}\)

EF = 13cm

b) Xét △ EDH và △ ENH có

EH là cạnh chung

\(\widehat{FDH}=\widehat{FNH}\)

\(\widehat{DEH}=\widehat{NEH}\)

Vậy  △ EDH = △ ENH  (c-g-c)

a: Xét ΔEDH và ΔEKH có

ED=EK

\(\widehat{DEH}=\widehat{KEH}\)

EH chung

Do đó: ΔEDH=ΔEKH

Suy ra: DH=DK

b: Ta có: ΔEDH=ΔEKH

nên \(\widehat{EDH}=\widehat{EKH}\)

hay \(\widehat{EKH}=90^0\)