K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

Vì ΔABD ~ ΔBDC (cmt) nên góc A = DBC.

Ta có A = 90 ∘ nên DBC =  90 ∘ . Theo định lí Pytago, ta có

B C 2 = C D 2 - B D 2 = 25 2 - 20 2 = 152 . Vậy BC = 15cm

Đáp án: C

12 tháng 5 2019

Xét tam giác ABD và BDC có:

B A D ^ = D B C ^ = 60 ∘

A B D ^ = B D C ^ (so le trong)

⇒ Δ A B D   đ ồ n g   d ạ n g   Δ B D C   g ,   g ⇒ A B B D = B D D C ⇒ B D 2 = A B . D C = 4.9 = 36 ⇒ B D = 6 c m

Đáp án: D

15 tháng 6 2017

3)áp dụng pytago để tính

19 tháng 10 2019

ΔABD và ΔBDC có góc ABD = BDC (hai góc ở vị trí so le trong bằng nhau do AB // CD);

Và A B B D = B D D C (vì 16 20 = 20 25 )

Do đó ΔABD ~ ΔBDC (c.g.c)

Đáp án: A

9 tháng 6 2017

Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD) 
-> Tam giác ADB và BCD đồng dạng 

=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1) 

Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago : 
BD^2+BC^2=CD^2 
hay BC^2+BD^2 =625 (2) 

Từ (1) và (2) ta giải hệ thì có BC, BD: 
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144) 
-> BD = can( (625+can( 387025))/2 ) 
-> BC = 3000/BD

Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD) 
-> Tam giác ADB và BCD đồng dạng 

=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1) 

Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago : 
BD^2+BC^2=CD^2 
hay BC^2+BD^2 =625 (2) 

Từ (1) và (2) ta giải hệ thì có BC, BD: 
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144) 
-> BD = can( (625+can( 387025))/2 ) 
-> BC = 3000/BD

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

28 tháng 8 2020

a) CE = BC – BE = 25 – 9 =16 = CD

Tam giác ABE cân tại B => góc BAE = góc BEA

Tam giác CED cân tại C => góc CED = góc CDE

=> góc BEA + góc CED

= góc BAE + góc CDE

= 90 độ - góc EAD + 90 độ - góc ADE

= 180 độ - (góc EAD + góc ADE)

=180 độ - (180 độ - góc AED)

=góc AED

=> góc BEA + góc CED=góc AED

Mà góc BEA + góc CED + góc AED = 180 độ

=> góc BEA + góc CED=góc AED = 90 độ