K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

Thay x = 1, y = -3 vào biểu thức ta có 1/3. 12.(-3)2, - 3.1.(-3) = 12.

Chọn A

27 tháng 7 2020

1. A = 6x^3 - 3x^2 + 2.|x| + 4 với x = -23

Thay x = -23 vào biểu thức trên, ta có:

A = 6.(-23)^3 - 3.(-23)^2 + 2.|-23| + 4

A = -74539

2. B = 2.|x| - 3.|y| với x = 12; y = -3

Thay x = 12; y = -3 vào biểu thức trên, ta có:

B = 2.|12| - 3.|-3|

B = 15

3. |2 + 3x| = |4x - 3|

ta có: 2 + 3x = \(\hept{\begin{cases}4x-3\Leftrightarrow4x-3\ge0\Leftrightarrow x\ge\frac{3}{4}\\-\left(4x-3\right)\Leftrightarrow4x-3< 0\Leftrightarrow x< \frac{3}{4}\end{cases}}\)

Nếu x >= 3/4, ta có phương trình:

2 + 3x = 4x - 3

<=> 3x - 4x = -3 - 2

<=> -x = 5

<=> x = 5 (TM)

Nếu x < 3/4, ta có phương trình:

 2 + 3x = -(4x - 3)

<=> 2 + 3x = -4x + 3

<=> 3x + 4x = 3 - 2

<=> 7x = 1

<=> x = 1/7 (TM) 

Vậy: tập nghiệm của phương trình là: S = {5; 1/7}

NM
26 tháng 7 2021

\(B=8x^2+2x-8x^3-8x^2+8x^3-2x+3=3\)

\(C=x^3-3x^2+3x-1+x^3+3x^2+3x+1+2x^3-8x=4x^3-2x\)

\(D=\left(x+y-5\right)^2-2\left(x+y-5\right)\left(x+3\right)+\left(x+3\right)^2=\left(x+y-5-x-3\right)^2=\left(y-8\right)^2\)

câu 2. ta có 

a.\(\left(x-y\right)^2=\left(x+y\right)^2-4xy=7^2-4\times12=1\)

b.\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)=3\left(x+y\right)^2-6xy-2\left(x+y\right)^3+6xy\left(x+y\right)=3-6xy-2+6xy=1\)

7 tháng 7 2016

Bài 1: a) min B=50 (vì |y-3|>=0)  khi |y-3|=0=> y=3

b) tương tự min C=-1 khi x=100 và y=-200

 

17 tháng 8 2021

CC có làm thì mới có ăn

a: \(M=\left(\dfrac{-3}{7}x^3y\right)\cdot\dfrac{7xy^3}{12}-x^2y^2\cdot\left(-\dfrac{3}{4}x^2y^2\right)\)

\(=\dfrac{-1}{4}x^4y^4+\dfrac{3}{4}x^4y^4\)

\(=\dfrac{1}{2}x^4y^4\)

b: Hệ số là 1/2

Biến là \(x^4;y^4\)

bậc là 4+4=8

c: Thay x=-1 và y=-2 vào M, ta được:

\(M=\dfrac{1}{2}\left(-1\right)^4\cdot\left(-2\right)^4=\dfrac{1}{2}\cdot16=8\)

Bài 1:

a) Ta có: \(x^3+3x^2+3x+2=0\)

\(\Leftrightarrow x^3+2x^2+x^2+2x+x+2=0\)

\(\Leftrightarrow x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x+1\right)=0\)

\(x^2+x+1>0\forall x\)

nên x+2=0

hay x=-2

Vậy: x=-2

b) Ta có: \(x^3-12x^2+48x-72=0\)

\(\Leftrightarrow x^3-6x^2-6x^2+36x+12x-72=0\)

\(\Leftrightarrow x^2\left(x-6\right)-6x\left(x-6\right)+12\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x^2-6x+12\right)=0\)

\(x^2-6x+12>0\forall x\)

nên x-6=0

hay x=6

Vậy: x=6

19 tháng 7 2019

Đề a,b bạn ghi mik ko hiểu

c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)

Mà  \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)