K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

kết bạn rồi mk giải chi tiết cho

4 tháng 9 2020

đoạn sau thêm tham số để làm thì làm sao để tìm được tham số đó ạ, em cũng làm đến đó nhưng không tìm được tham số phù hợp

NV
4 tháng 9 2020

UCT mở rộng: ta sẽ đi tìm m;n sao cho: \(\frac{5b^3-a^3}{ab+3b^2}\le ma+nb\)

\(\Leftrightarrow a^3+ma^2b+\left(3m+n\right)ab^2+\left(3n-5\right)b^3\ge0\) (1)

\(\Leftrightarrow x^3+m.x^2+\left(3m+n\right)x+\left(3n-5\right)\ge0\) với \(x=\frac{a}{b}\)

Dự đoán rằng sẽ phân tích về dạng \(\left(a-b\right)^2.P\left(a;b\right)\) hay \(\left(x-1\right)^2P\left(x\right)\)

Do đó (1) phải có nghiệm \(x=1\)

\(\Rightarrow4m+4n-4=0\Rightarrow n=1-m\)

Thay vào: \(x^3+mx^2+\left(2m+1\right)x-3m-2\ge0\)

Hoocne hạ bậc: \(\left(x-1\right)\left(x^2+\left(m+1\right)x+3m+2\right)\ge0\)

\(\Rightarrow x^2+\left(m+1\right)x+3m+2\) cũng có 1 nghiệm \(x=1\)

\(\Rightarrow4m+4=0\Rightarrow m=-1\Rightarrow n=2\)

8 tháng 9 2019

Cách giải dùng dãy tỉ số để giải thôi

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{8x-12y}{-7}=\frac{12y-24z}{-9}=\frac{\left(8x-12y\right)+\left(12y-24z\right)}{-7-9}=\frac{8x-24z}{-16}=\frac{24z-8x}{16}\)

Mà theo đề bài thì \(\frac{8x-12y}{-7}=\frac{12y-24z}{-9}=\frac{24z-8x}{-13}\)

Do đó \(\frac{24z-8x}{-13}=\frac{24z-8x}{16}\Rightarrow24z-8x=0\Leftrightarrow z=\frac{x}{3}\)

Làm tương tự ta cũng được \(8x=12y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)

Suy ra \(\frac{x}{3}=\frac{y}{2}=z\)và x2+y2+z2=350

Tới đây dùng tính chất dãy tỉ số bằng nhau tính ra x=75,y=50;z=25

Vậy x=75;y=50;z=25

29 tháng 10 2016

C, CHO 7X=3Y VA X -Y =16

=> \(\frac{x}{3}=\frac{y}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

=> \(\hept{\begin{cases}x=-4.3\\y=-4.7\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-28\end{cases}}}\)

bạn viết lại đề đi đè gì mà sai hết

21 tháng 8 2020

Ta cóa : \(20x^6-\left(8-40y\right)x^3+25y^2-5\)

\(=20x^6-8x^3+40x^3y+25y^2-5\)

\(=16x^6+40x^3y+25y^2+4x^6-8x^3+4-9\)

\(=\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\)

Ta thấy ngay \(\left(4x^3+5y\right)^2\ge0;4\left(x^3-1\right)^2\ge0\)

\(\Rightarrow\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\ge-9\)

\(\Rightarrow M=\frac{6}{20x^6-\left(8-40y\right)x^3+25y^2-5}\le\frac{6}{-9}=-\frac{2}{3}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}4x^3+5y=0\\x^3-1=0\end{cases}\Leftrightarrow x=1;y=-\frac{4}{5}}\)

NV
13 tháng 5 2020

\(M=\frac{6}{\left(4x^6-8x^3+4\right)+\left(16x^6+40x^3y+25y^2\right)-9}\)

\(M=\frac{6}{\left(2x^3-2\right)^2+\left(4x^3+5y\right)^2-9}\)

Biểu thức này chỉ tồn tại GTNN, không tồn tại GTLN

11 tháng 5 2020

Sửa: \(M=\frac{6}{20x^6-\left(8-40y\right)x^2+25y^2-5}\)

Đặt \(N=20x^6-\left(8-40y\right)x^2+25y^2+5\)

\(=20\left[x^6-2x^3\frac{1-5y}{5}+\left(\frac{1-5y}{5}\right)^2\right]+25y^2-20\left(\frac{1-5y}{5}\right)^2=5\)

\(=20\left(x^3-\frac{1-5y}{5}\right)^2+25y^2-\frac{4}{5}+8y-20y^2+5=20\left(x^3-\frac{1-5y}{2}\right)^2+5\left(y+\frac{4}{5}\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}y=\frac{-4}{5}\\x=1\end{cases}\Rightarrow M=\frac{6}{N}\le\frac{6}{1}=6}\)

Vậy Max M=6 đạt được khi x=1; y=-4/5

19 tháng 7 2017

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{18x-27y}{100}=\frac{27y-24z}{101}=\frac{24z-18x}{102}=\frac{18x-27y+27y-24z+24z-18x}{100+101+102}=\frac{0}{303}=0\)

\(\Rightarrow\frac{27y-24z}{101}=0\Rightarrow27y-24z=0\Rightarrow27y=24z\Rightarrow9y=8z\Rightarrow\frac{y}{8}=\frac{z}{9}\) (1)

\(\frac{24z-18x}{102}=0\Rightarrow24z-18x=0\Rightarrow18x=24z\Rightarrow3x=4z\Rightarrow\frac{x}{4}=\frac{z}{3}\Rightarrow\frac{x}{12}=\frac{z}{9}\) (2)

Từ (1) và (2) suy ra \(\frac{x}{12}=\frac{y}{8}=\frac{z}{9}=\frac{x+y+z}{12+8+9}=\frac{116}{29}=4\)

=> x/12 = 4 => x = 48

y/8 = 4 => y = 32

z/9 = 4 => z = 36