Rút gọn biểu thức A = 1 2 - 3 + 7 - 4 3
A. 1
B. 2
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-2+3-4+5-6+7-8+...+99-100\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(A=\left(-1\right).50\)
\(A=-50\)
\(B=1+3-5-7+9+11-...-397-399\)
\(B=1-2+2-2+2-...+2-2-399\)
\(B=1-399\)
\(B=-398\)
\(C=1-2-3+4+5-6-7+...+97-98-99+100\)
\(C=-1+1-1+1-...-1+1\)
\(C=0\)
\(D=2^{2024}-2^{2023}-...-1\)
\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)
\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)
\(D=2^{2024}-\left(2^{2024}-1\right)\)
\(D=2^{2024}-2^{2024}+1\)
\(D=1\)
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100
A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)
Xét dãy số 1; 3; 5;...;99
Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2
Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)
Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1
A = - 1\(\times\)50 = -50
b,
B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399
B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)
B = -8 + (-8) +...+ (-8)
Xét dãy số 1; 9; ...;393
Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8
Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)
Tổng B có 50 nhóm mỗi nhóm có giá trị là -8
B = -8 \(\times\) 50 = - 400
c,
C = 1 - 2 - 3 + 4 + 5 - 6 +...+ 97 - 98 - 99 +100
C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)
C = 0 + 0 + 0 +...+0
C = 0
d, D = 22024 - 22023- ... +2 - 1
2D = 22005- 22004 + 22003+...- 2
2D + D = 22005 - 1
3D = 22005 - 1
D = (22005 - 1): 3
Lời giải:
a.
\(=\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}+\frac{4(\sqrt{5}-1)}{(\sqrt{5}-1)(\sqrt{5}+1)}=\frac{\sqrt{5}+2}{5-2^2}+\frac{4(\sqrt{5}-1)}{5-1}\)
$=\sqrt{5}+2+(\sqrt{5}-1)=2\sqrt{5}+1$
b.
$=\frac{4(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}+\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}-2\sqrt{3}$
$=\frac{4(\sqrt{3}+1)}{2}+\frac{7(3+\sqrt{2})}{1}-2\sqrt{3}$
$=2(\sqrt{3}+1)+7(3+\sqrt{2})-2\sqrt{3}$
$=23+7\sqrt{2}$
c.
$=(\frac{4(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}-\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}).\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}$
$=[(3+\sqrt{5})-(\sqrt{5}+2)].(3+\sqrt{2})$
$=1(3+\sqrt{2})=3+\sqrt{2}$
Ta có
B = 2 a − 3 a + 1 − a − 4 2 − a a + 7 = 2 a 2 + 2 a – 3 a – 3 – ( a 2 – 8 a + 16 ) – ( a 2 + 7 a ) = 2 a 2 + 2 a – 3 a – 3 – a 2 + 8 a – 16 – a 2 – 7 a = - 19
Đáp án cần chọn là: D
\(a,\sqrt{75}+2\sqrt{3}-2\sqrt{7}\\ =\sqrt{25\cdot3}+2\sqrt{3}-2\sqrt{7}\\ =5\sqrt{3}+2\sqrt{3}-2\sqrt{7}\\ =7\sqrt{3}-2\sqrt{7}\)
\(b,\sqrt{\left(4-\sqrt{7}\right)^2}-\sqrt{63}\\ =\left|4-\sqrt{7}\right|-\sqrt{9\cdot7}\\ =4-\sqrt{7}-3\sqrt{7}\\ =4-4\sqrt{7}\)
\(c,\dfrac{3}{\sqrt{5}+3}-\dfrac{\sqrt{5}}{\sqrt{5}-3}\\ =\dfrac{3\left(\sqrt{5}-3\right)}{5-3}-\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{5-3}\\ =\dfrac{3\sqrt{5}-9-5-3\sqrt{5}}{2}\\ =\dfrac{-14}{2}\\ =-7\)
\(D=a^{\dfrac{7}{2}}.a^{\dfrac{1}{3}}.a^{\dfrac{7}{4}}=a^{\dfrac{7}{2}+\dfrac{1}{3}+\dfrac{7}{4}}=a^{\dfrac{67}{12}}=\sqrt[12]{a^{67}}\)
\(D=a^{\sqrt{2}-1}.a^{2\sqrt{2}}.a^{3-3\sqrt{2}}=a^{\sqrt{2}-1+2\sqrt{2}+3-3\sqrt{3}}=a^2\)
\(D=\left(\sqrt{a}\right)^7\cdot\left(\sqrt[3]{a}\right)\left(\sqrt[4]{a}\right)^7\)
\(=a^{\dfrac{1}{2}\cdot7}\cdot a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{4}\cdot7}\)
\(=a^{\dfrac{7}{2}+\dfrac{1}{3}+\dfrac{7}{4}}=a^{\dfrac{67}{12}}\)
b: \(D=a^{\sqrt{2}-1}\cdot\left(a^2\right)^{\sqrt{2}}\cdot\left(a^3\right)^{1-\sqrt{2}}\)
\(=a^{\sqrt{2}-1}\cdot a^{2\sqrt{2}}\cdot a^{3-3\sqrt{2}}\)
\(=a^{\sqrt{2}-1+2\sqrt{2}+3-3\sqrt{2}}=a^2\)
Chọn đáp án D.