Cho hai số dương a, b thỏa mãn a 2 + b 2 = 7 a b . Đẳng thức nào sau đây đúng?
A. log 7 a + b 2 = log 7 a + log 7 b 2
B. log 7 a + b 3 = log 7 a + log 7 b 2
C. log 7 a + b 3 = log 7 a + log 7 b 3
D. log 7 a + b 7 = log 7 a + log 7 b 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có; x < A ⇔ - A < x < A .
Suy ra; nếu a < b thì - b < a < b ⇒ - b ≤ a ≤ b
Nếu a, b là những số thực và a ≤ b thì a 2 ≤ b 2 ⇔ a 2 ≤ b 2
Đặt A=\(\dfrac{b+c+5}{1+a}+\dfrac{c+a+4}{2+b}+\dfrac{a+b+3}{3+c}\)
Ta có :A+3=\(\left(\dfrac{b+c+5}{1+a}+1\right)+\left(\dfrac{c+a+4}{2+b}+1\right)+\left(\dfrac{a+b+3}{3+a}+1\right)\)
=\(\dfrac{a+b+c+6}{1+a}+\dfrac{a+b+c+6}{2+b}+\dfrac{a+b+c+6}{3+c}\)
=\(\left(a+b+c+6\right)\left(\dfrac{1}{1+a}+\dfrac{1}{2+b}+\dfrac{1}{3+c}\right)\)
=\([\left(a+1\right)+\left(b+2\right)+\left(c+3\right)|\left(\dfrac{1}{a+1}+\dfrac{1}{b+2}+\dfrac{1}{c+3}\right)\)
Áp dụng bất đẳng thức AM-GM dạng \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)( với x,y,z>0)
Ta có :A+3\(\ge9\)\(\Rightarrow A\ge6\)
Dấu "=" xảy ra khi a=3,b=2,c=1
Giả sử x,y là các số nguyên thoả mãn 9a+b=-21
Ta thấy 9a chia hết cho 3 và -21 chia hết cho 3
Khi đó b chia hết cho 3
Đặt \(b=3k\left(k\in Z\right)\)
Thay b = 3k và 9a + b = -21 ta được
\(9a+3k=-21\Rightarrow9a=-21-3k\Rightarrow a=\frac{-21-3k}{9}=\frac{-7-k}{3}\)
Vậy....
b, Làm tương tự
Tu \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
Hay \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\Leftrightarrow a=b=c\)
Thay vao M ta co: \(M=\dfrac{a\cdot a+a\cdot a+a\cdot a}{a^2+a^2+a^2}=\dfrac{2019}{2019}=\dfrac{2018}{2018}=\dfrac{2017}{2017}=\dfrac{2016}{2015+1}=1\)
Ta có : \(a^2+b^2\ge ab+1\)
\(2\sqrt{a^2b^2}\ge ab+1\)
\(ab\ge1\)
Dấu = xảy ra \(< =>a=b=\sqrt{1}=1\)
Bđt ngược dấu rồi thì phải
Chọn B