Cho tam giác ABC có AB bằng AC . Kẻ tia phân giác của góc A cắt cạnh BC tại I. Chứng minh:
a) tam giác AIB = tam giác AIC ?
b) AI là đường trung trực của đoạn thẳng BC?
vẽ hình nữa nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Ta có :
Δ ABC vuông tại A
Mà AI là đường trung tuyến của BC
=> AI = BI = IC
Xét Δ AIB, có :
AI = BI (cmt)
=> Δ AIB cân tại A
Xét Δ AIC, có :
AI = AC (cmt)
=> Δ AIC cân tại I
Ta có hình vẽ:
a/ Xét tam giác AIB và tam giác AIC có:
BI = IC (GT)
\(\widehat{AIB}\)=\(\widehat{AIC}\) (AI là đường trung trực của BC)
AI : cạnh chung
Vậy tam giác AIB = tam giác AIC (c.g.c)
b/ Ta có: tam giác AIB = tam giác AIC (câu a)
=> \(\widehat{BAI}\)=\(\widehat{CAI}\) (2 góc tương ứng)
=> AI là phân giác \(\widehat{BAC}\) (đpcm)
c/
*Cách 1:
Xét tam giác AHI và tam giác AKI có:
\(\widehat{AHI}\)=\(\widehat{AKI}\) = 900
AI: cạnh chung
\(\widehat{HAI}\)=\(\widehat{KAI}\) (đã chứng minh)
Vậy tam giác AHI = tam giác AKI
(theo trường hợp cạnh huyền góc nhọn)
=> IH = IK (2 cạnh tương ứng)
*Cách 2:
Xét tam giác BHI và tam giác CKI có:
\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác AIB = tam giác AIC)
BI = IC (GT)
\(\widehat{BHI}\)=\(\widehat{CKI}\)=900
Vậy tam giác BHI = tam giác CKI
(theo trường hợp cạnh huyền góc nhọn)
=> IH = IK (2 cạnh tương ứng)
Ở đây mình làm 2 cách nhưng khi vào làm bài bạn viết 1 cách thôi nhé, bạn chọn cách nào dễ hiểu mà làm...^^
a) Kẻ MN
Có: IM là tia p/g của góc AIB
=> AM:BM = AI:BI (1)
IN là tia p/g của góc AIC
=> AN:NC = AI:IC (2)
Từ (1) và (2) => BI =CI
=> AM:MB = AN:NC
=> MN // BC ( Talet đảo )
1.Vì các tia phân giác của các góc B và C cắt nhau tại I
\(\Rightarrow\)I là giao của các đường phân giác trong tam giác
\(\Rightarrow\)AI là tia phân giác của góc A
1.
Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)
\(\widehat{IDB}=\widehat{IEB}=90^0\)
\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)
BI cạnh huyền chung
⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)
Suy ra: ID = IE (hai cạnh tương ứng) (1)
Xét hai tam giác vuông IEC và IFC, ta có ;
\(\widehat{IEC}=\widehat{IFC}=90^0\)
\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)
CI canh huyền chung
Suy ra: ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)
Suy ra: IE = IF (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IF
Xét hai tam giác vuông IDA và IFA, ta có:
\(\widehat{IDA}=\widehat{IFA}=90^0\)
ID = IF (chứng minh trên)
AI cạnh huyền chung
Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)
Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)
Vậy AI là tia phân giác của \(\widehat{A}\)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: Xét ΔABI và ΔACI có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔABI=ΔACI
câu b dâu