Gieo một con xúc sắc cân đối và đồng chất một lần. Giả sử con xúc sắc xuất hiện mặt k chấm. Xét phương trình . Tính xác suất để phương trình trên có 3 nghiệm thực phân biệt
A.
B.
C.
D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Có 6 khả năng xảy ra khi tung súc sắc nên số phần tử của không gian mẫu là n ( Ω ) = 6 .
Gọi A là biến cố: Phương trình x 2 + b x + 2 = 0 (1) có hai nghiệm phân biệt.
Phương trình (1) có hai nghiệm phân biệt ⇔ b 2 − 8 > 0 ⇔ b ∈ 3 ; 4 ; 5 ; 6 ⇒ n A = 4 .
Vậy xác suất cần tính là p A = 2 3 .
Đáp án D.
Phương trình x 2 + b x + 2 = 0 có hai nghiệm phân biệt ⇔ Δ = b 2 − 8 > 0.
Mà 1 ≤ b ≤ 6 , b ∈ ℕ * ⇒ b ∈ 3 ; 4 ; 5 ; 6 .
Xác suất cần tìm là 4 6 = 2 3 .
Đáp án D
Phương pháp:
+) Phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt ⇔ ∆ > 0
Cách giải:
Phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt ⇔ ∆ = b 2 - 8 > 0
Vì b là số chấm của con súc sắc nên
Vậy xác suất cần tìm là 4 6 = 2 3
Đáp án D
Phương trình x 2 + b x + 2 = 0 có hai nghiệm phân biệt
⇔ ∆ = b 2 - 8 > 0
⇒ b ∈ 3 ; 4 ; 5 ; 6
Xác suất cần tìm là 4 6 = 2 3
Đáp án A
n(W)=6, gọi A là biến cố cần tính xác suất thì