K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Lấy điểm O(0;0) nằm trên đường thẳng (b). Khi đó ta có:

 

Chọn B

NV
22 tháng 3 2022

Lấy \(O\left(0;0\right)\) là 1 điểm thuộc \(d_2\)

\(\Rightarrow d\left(d_1;d_2\right)=d\left(O;d_1\right)=\dfrac{\left|6.0-8.0-101\right|}{\sqrt{6^2+\left(-8\right)^2}}=\dfrac{101}{10}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta có vectơ pháp tuyến của hai đường thẳng là \(\overrightarrow {{n_1}}  = \left( {3;4} \right),\overrightarrow {{n_2}}  = \left( {6;8} \right)\) suy ra hai đường thẳng này song song, nên khoảng cách giữa chúng là khoảng cách từ một điểm bất kì từ đường thẳng này tới đường thẳng kia

Chọn điểm \(A\left( {0;\frac{5}{2}} \right) \in \Delta \), suy ra \(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta '} \right) = \frac{{\left| {6.0 + 8.\frac{5}{2} - 1} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{19}}{{10}}\)

Vậy khoảng cách giữa hai đường thẳng \(\Delta :3x + 4y - 10 = 0\) và \(\Delta ':6x + 8y - 1 = 0\) là \(\frac{{19}}{{10}}\)

21 tháng 6 2017

Giả sử đường thẳng ∆ song song với d : 3x- 4y+2= 0

Khi đó ; ∆ có phương trình là ∆ : 3x-4y +C= 0.

Lấy điểm  M( -2 ; -1) thuộc d.

Do đó ; 2 đường thẳng thỏa mãn là:3x – 4y + 7 = 0 và 3x – 4y – 3 = 0

Chọn B

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta có \(\frac{6}{3} = \frac{8}{4} \ne \frac{{ - 13}}{{ - 27}}\) nên hai đường thẳng này song song với nhau.

Chọn điểm \(A(9;0) \in \Delta '\) ta có:

\(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta } \right) = \frac{{\left| {6.9 + 8.0 - 13} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{41}}{{10}}\)

Vậy khoảng cách giữa hai đường thẳng đã cho là \(\frac{{41}}{{10}}\)

NV
24 tháng 7 2021

Đường thẳng song song d nên nhận (3;-4) là 1 vtpt

Phương trình:

\(3\left(x-2\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y-2=0\)

NV
6 tháng 2 2021

a.

Gọi \(M\left(x;y\right)\in d\)

\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)

\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)

b.

Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)

\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)

\(\Leftrightarrow7a^2+48ab-7b^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)

\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)

25 tháng 4 2020

PT d2 làm sao tìm đc vậy bạn

25 tháng 4 2020

Dòng cuối cùng , bạn áp dụng công thức nào vậy

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Ta có: \(\Delta \):\(\frac{x}{{ - 4}} + \frac{y}{2} = 1 \Leftrightarrow x - 2y + 4 = 0\)

Vậy khoảng cách từ O đến \(\Delta \) là: \(d\left( {O;\Delta } \right) = \frac{{\left| {1.0 - 2.0 + 4} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \frac{{4\sqrt 5 }}{5}\)

b) Lấy \(M\left( {0;1} \right) \in {\Delta _1}\)

Suy ra: \(d\left( {{\Delta _1},{\Delta _2}} \right) = d\left( {M,{\Delta _2}} \right) = \frac{{\left| {0 - 1 - 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 2 \)