Cho 3 − 2 x 4 x − 1 ' = a x − b 4 x − 1 4 x − 1 , ∀ x > 1 4 . . Tính a b .
A. − 16.
B. − 4
C. − 1
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 1.2 + 2.3 + 3.4 + ...... + 100.101
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 100.101.102
=> 3A = 100.101.102
=> A = 100.101.102/3
=> A = 343400
Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap
A = \(4\left(x-5\right)-x^2\left(x+1\right)-x^3\left(x-3\right)-\left(x-4+x^2\right)\)
A = \(4x-20-x^3-x^2-x^4+3x^3-x+4-x^2\)
A = \(-x^3-3x^3-x^2+x^2-x^4+4x-x-20+4\)
A = \(-4x^3-x^4+4x-16\)
B = \(-3\left(x^2-x+1\right)-2\left(4-x^2\right)-6\left(x+1\right)-x^4-x^3\)
B = \(-3x^2+3x-3-8+2x^2-6x-6-x^4-x^3\)
B = \(-x^4-x^3-3x^2-2x^2+3x-6x-3-8-6\)
B = \(-x^4-x^3-5x^2-3x-17\)
C = \(-\left(x^4+3x^2-2\right)-x^2\left(5-x\right)+3\left(x-1\right)\)
C = \(-x^4-3x^2+2-5x^2+x^3+3x-3\)
C = \(-x^4+x^3-3x^2+5x^2+3x+2-3\)
C = \(-x^4+x^3-2x^2+3x-1\)
#Yiin
\(A=4x-20-x^3-x-x^4+3x^3-x+4-x^2\)
\(=-x^4+2x^3-x^2+2x-16\)
\(B=-3x^2+3x-3-8+2x^2-6x-6-x^4-x^3\)
\(=-x^4-x^3-x^2-3x-17\)
\(C=-x^4-3x^2+2-5x^2+x^3+3x-3\)
\(=-x^4+x^3-8x^2+3x-1\)
Từ đó có:
\(A-B=-x^4+2x^3-x^2+2x-16-\left(-x^4-x^3-x^2-3x-17\right)\)
\(=-x^4+2x^3-x^2+2x-16+x^4+x^3+x^2+3x+17\)\(=3x^3+5x+1\)
\(B-C=-x^4-x^3-x^2-3x-17-\left(-x^4+x^3-8x^2+3x-1\right)\)
\(=-x^4-x^3-x^2-3x-17+x^4-x^3+8x^2-3x+1\)
\(=-2x^3+7x^2-6x-16\)
\(C-A=-x^4+x^3-8x^2+3x-1-\left(-x^4+2x^3-x^2-2x-16\right)\)
\(=-x^4+x^3-8x^2+3x-1+x^4-2x^3+x^2+2x+16\)
\(=-x^3-7x^2+5x+15\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Dấu chấm là nhân
a) \(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\) \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
b) \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\) \(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)
c) Đặt \(C=\frac{4}{5.7}+\frac{4}{7.9}+....+\frac{4}{59.61}\)
\(\Rightarrow\frac{1}{2}C=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{59}-\frac{1}{61}\)
\(\Rightarrow\frac{1}{2}C=\frac{1}{5}-\frac{1}{61}=\frac{56}{305}\)
\(\Rightarrow C=\frac{56}{305}:\frac{1}{2}=\frac{112}{305}\)
CHÚC BẠN HỌC TỐT NHA! ĐÚNG THÌ NHA!
Bài 1
a) 3 2/5 - 1/2
= 17/5 - 1/2
= 34/10 - 5/10
= 29/10
b) 4/5 + 1/5 × 3/4
= 4/5 + 3/20
= 16/20 + 3/20
= 19/20
c) 3 1/2 × 1 1/7
= 7/2 × 8/7
= 4
d) 4 1/6 : 2 1/3
= 25/6 : 7/3
= 25/14
Bài 2
a) 3 × 1/2 + 1/4 × 1/3
= 3/2 + 1/12
= 18/12 + 1/12
= 19/12
b) 1 4/5 - 2/3 : 2 1/3
= 9/5 - 2/3 : 7/3
= 9/5 - 2/7
= 63/35 - 10/35
= 53/35
\(\begin{array}{l}A + B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) + ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3}\\ = (6{x^4} - 3{x^4}) + ( - 4{x^3} - 2{x^3}) - 5{x^2} + (x + x) + ( - \dfrac{1}{3} + \dfrac{2}{3})\\ = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \dfrac{1}{3}\\A - B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) - ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \dfrac{2}{3}\\ = (6{x^4} + 3{x^4}) + ( - 4{x^3} + 2{x^3}) + 5{x^2} + (x - x) + ( - \dfrac{1}{3} - \dfrac{2}{3})\\ = 9{x^4} - 2{x^3} + 5{x^2} - 1\end{array}\)\(\begin{array}{l}A + B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) + ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3}\\ = (6{x^4} - 3{x^4}) + ( - 4{x^3} - 2{x^3}) - 5{x^2} + (x + x) + ( - \dfrac{1}{3} + \dfrac{2}{3})\\ = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \dfrac{1}{3}\\A - B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) - ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \dfrac{2}{3}\\ = (6{x^4} + 3{x^4}) + ( - 4{x^3} + 2{x^3}) + 5{x^2} + (x - x) + ( - \dfrac{1}{3} - \dfrac{2}{3})\\ = 9{x^4} - 2{x^3} + 5{x^2} - 1\end{array}\)
Đáp án C