K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

A = \(4\left(x-5\right)-x^2\left(x+1\right)-x^3\left(x-3\right)-\left(x-4+x^2\right)\)

A = \(4x-20-x^3-x^2-x^4+3x^3-x+4-x^2\)

A = \(-x^3-3x^3-x^2+x^2-x^4+4x-x-20+4\)

A = \(-4x^3-x^4+4x-16\)

B = \(-3\left(x^2-x+1\right)-2\left(4-x^2\right)-6\left(x+1\right)-x^4-x^3\)

B = \(-3x^2+3x-3-8+2x^2-6x-6-x^4-x^3\)

B = \(-x^4-x^3-3x^2-2x^2+3x-6x-3-8-6\)

B = \(-x^4-x^3-5x^2-3x-17\)

C = \(-\left(x^4+3x^2-2\right)-x^2\left(5-x\right)+3\left(x-1\right)\)

C = \(-x^4-3x^2+2-5x^2+x^3+3x-3\)

C = \(-x^4+x^3-3x^2+5x^2+3x+2-3\)

C = \(-x^4+x^3-2x^2+3x-1\)

#Yiin

5 tháng 8 2018

\(A=4x-20-x^3-x-x^4+3x^3-x+4-x^2\)

\(=-x^4+2x^3-x^2+2x-16\)

\(B=-3x^2+3x-3-8+2x^2-6x-6-x^4-x^3\)

\(=-x^4-x^3-x^2-3x-17\)

\(C=-x^4-3x^2+2-5x^2+x^3+3x-3\)

\(=-x^4+x^3-8x^2+3x-1\)

Từ đó có:

\(A-B=-x^4+2x^3-x^2+2x-16-\left(-x^4-x^3-x^2-3x-17\right)\)

\(=-x^4+2x^3-x^2+2x-16+x^4+x^3+x^2+3x+17\)\(=3x^3+5x+1\)

\(B-C=-x^4-x^3-x^2-3x-17-\left(-x^4+x^3-8x^2+3x-1\right)\)

\(=-x^4-x^3-x^2-3x-17+x^4-x^3+8x^2-3x+1\)

\(=-2x^3+7x^2-6x-16\)

\(C-A=-x^4+x^3-8x^2+3x-1-\left(-x^4+2x^3-x^2-2x-16\right)\)

\(=-x^4+x^3-8x^2+3x-1+x^4-2x^3+x^2+2x+16\)

\(=-x^3-7x^2+5x+15\)

10 tháng 4 2020

dsssws

24 tháng 4 2022

giúp em ạ

 

24 tháng 4 2022

a) A(x) = 2x3 + 5 + x2 - 3x - 5x3 - 4

            = 2x- 5x3  + x2 - 3x + 5 - 4

            = -3x3 + x2 - 3x + 1

    B(x) = -3x4 - x3 + 2x+ 2x + x4 - 4 - x2

            = -3x+ x4 - x3 + 2x- x+ 2x - 4

            = -2x4 - x3 + x2 + 2x - 4

b) 

H(x) = A(x) - B(x)

H(x) = (-3x3 + x2 - 3x + 1) - (-2x4 - x3 + x2 + 2x - 4)

        = -3x3 + x2 - 3x + 1 + 2x4 + x3 - x2 - 2x + 4

        = 2x4 - 3x+ x3 + x2 - x - 3x - 2x + 1 + 4

        = 2x4 - 2x3 -5x + 5

`@` `\text {Ans}`

`\downarrow`

`a)`

Thu gọn:

`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)

`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`

`= -x^5 + 5x^4 + 2x^2 + 2x - 4`

`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)

`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`

`= x^5 - x^4 - x^3 - x^2 + 7x - 2`

`@` Tổng:

`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`

`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`

`= 4x^4 - x^3 + x^2 + 9x - 6`

`@` Hiệu:

`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`

`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`

`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`

`b)`

`@` Thu gọn:

\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)

`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`

`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`

`= x^4 - 2x^3 - x^2 + 15x + 10`

\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)

`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`

`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`

`= x^4 + 3x^3 + 2x - 4`

`@` Tổng:

`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)

`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`

`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`

`= 2x^4 + x^3 - x^2 + 17x + 6`

`@` Hiệu: 

`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)

`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`

`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`

`= -5x^3 - x^2 + 13x + 14`

`@` `\text {# Kaizuu lv u.}`

`@` `\text {Ans}`

`\downarrow`

Gửi c!

loading...

loading...

loading...

27 tháng 6 2023

Bài 1: 

a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)

\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)

\(=10x^2+10x^2\)

\(=20x^2\)

b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)

\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)

\(=-4x^4+9x^3+4x^2-44x\)

4 tháng 6 2020

Where?

4 tháng 6 2020

sai rồi bạn, - x^4 đâu phải +

24 tháng 10 2023

Dễ

 Thế

Cũnhoir

Dc

Chịu

Chắc

Phải

Ngu 

Lamqs

Mới

Hỏi

Câu

Này

 

a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)

\(=x^5+x^3-4x^2-2x+5\)

\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)

\(=x^5-x^4+2x^2-3x+1\)

b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)

\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)

\(=2x^5-x^4+x^3-2x^2-5x+6\)

22 tháng 8 2023

a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)

\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)

\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)

\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)

\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)

\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)

\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)

\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)