Tìm tổng phần thực và phần ảo của số phức z thỏa mãn: (1 - i) ( z - 2i) = 2 + i.
A. 4.
B. 3.
C. 5.
D. 7.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Ta có: ( 1 + i)2(2 - i) z = 8 + i + (1 + 2i)z
Nên z[( 1 + i)2(2 -i) – (1 + 2i) ] = 8 + i
Suy ra: z[2i(2 - i) – 1 - 2i] = 8 + i
Vậy số phức z đã cho có phần thực là 2, phần ảo là -3.
Chọn C.
Đặt z = x + yi
Tổng phần thực và phần ảo của số phức z là -3+ 13 = 10.
Đáp án C.
Phương pháp:
Đặt z = a + b i , a , b ∈ R , giải tìm số phức z và tính tổng phần thực, phần ảo: a + b .
Cách giải:
Đặt z = a + b i , a , b ∈ R .
i z + 1 − i z ¯ = − 2 i ⇔ i a + b i + 1 − i a − b i = − 2 i ⇔ a i − b + a + b i − a i − b = − 2 i
⇔ − b i + a − 2 b = − 2 i ⇔ − b = − 2 a − 2 b = 0 ⇔ b = 2 a = 4 ⇒ a + b = 6
Tổng của phần thực và phần ảo là 6.
Chọn A.